Pregunta
upstudy study bank question image url

Use the rational zeros theorem to list the potential rational zeros of the polynomial function. Do not attempt to find the zeros. \[ f(x)=2 x^{7}-x^{5}+8 x^{4}+12 \] Find the potential rational zeros. Choose the correct answer below. A. \( -1,1,-2,2,-4,4,-3,3,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{1}{12}, \frac{1}{12} \) B. \( -1,1,-2,2,-4,4,-3,3,-6,6,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{1}{12}, \frac{1}{12} \) C. \( -1,1,-2,2,-4,4,-3,3,-6,6,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{3}{2}, \frac{3}{2} \) D. \( -1,1,-2,2,-4,4,-3,3,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{3}{2}, \frac{3}{2},-\frac{1}{12}, \frac{1}{12} \)

Ask by Lyons Henry. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The potential rational zeros are \( -1, 1, -2, 2, -3, 3, -4, 4, -6, 6, -12, 12, -\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2} \).

Solución

The Rational Zeros Theorem states that any rational zero of a polynomial of the form   f(x) = aₙxⁿ + ... + a₀ must be of the form p/q, where p divides the constant term a₀ and q divides the leading coefficient aₙ. For the polynomial   f(x) = 2x⁷ - x⁵ + 8x⁴ + 12, the constant term is 12 and the leading coefficient is 2. Step 1: List factors of the constant term (12):   p ∈ {±1, ±2, ±3, ±4, ±6, ±12}. Step 2: List factors of the leading coefficient (2):   q ∈ {±1, ±2}. Step 3: Form all fractions p/q and simplify: • When q = 1:   The candidates are ±1, ±2, ±3, ±4, ±6, ±12. • When q = 2:   The candidates are ±1/2, ±2/2, ±3/2, ±4/2, ±6/2, ±12/2.   Simplify:    ±2/2 = ±1 (already listed),    ±4/2 = ±2 (already listed),    ±6/2 = ±3 (already listed),    ±12/2 = ±6 (already listed).   So, the new candidate from this set is ±3/2. Thus, the complete list of potential rational zeros is:   ±1, ±2, ±3, ±4, ±6, ±12, ±1/2, ±3/2. Looking at the multiple-choice answers, option C matches this list.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the potential rational zeros of the polynomial \( f(x) = 2x^{7} - x^{5} + 8x^{4} + 12 \), we can use the Rational Zeros Theorem. According to this theorem, any potential rational zero of the polynomial is of the form \( \frac{p}{q} \), where \( p \) is a factor of the constant term (12) and \( q \) is a factor of the leading coefficient (2). The factors of 12 (the constant term) are: \( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \). The factors of 2 (the leading coefficient) are: \( \pm 1, \pm 2 \). Now we can form all possible combinations of \( \frac{p}{q} \): - When \( q = 1 \): \( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \) - When \( q = 2 \): \( \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{6}{2} (which is \pm 3) \) Now, combining these we get the full list of potential rational zeros: \[ \text{Possible rational zeros are } -1, 1, -2, 2, -3, 3, -4, 4, -6, 6, -12, 12, -\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}. \] So the correct answer among the options is **D**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad