Use the rational zeros theorem to list the potential rational zeros of the polynomial function. Do not attempt to find the zeros. \[ f(x)=2 x^{7}-x^{5}+8 x^{4}+12 \] Find the potential rational zeros. Choose the correct answer below. A. \( -1,1,-2,2,-4,4,-3,3,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{1}{12}, \frac{1}{12} \) B. \( -1,1,-2,2,-4,4,-3,3,-6,6,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{1}{12}, \frac{1}{12} \) C. \( -1,1,-2,2,-4,4,-3,3,-6,6,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{3}{2}, \frac{3}{2} \) D. \( -1,1,-2,2,-4,4,-3,3,-12,12,-\frac{1}{2}, \frac{1}{2},-\frac{3}{2}, \frac{3}{2},-\frac{1}{12}, \frac{1}{12} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the potential rational zeros of the polynomial \( f(x) = 2x^{7} - x^{5} + 8x^{4} + 12 \), we can use the Rational Zeros Theorem. According to this theorem, any potential rational zero of the polynomial is of the form \( \frac{p}{q} \), where \( p \) is a factor of the constant term (12) and \( q \) is a factor of the leading coefficient (2). The factors of 12 (the constant term) are: \( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \). The factors of 2 (the leading coefficient) are: \( \pm 1, \pm 2 \). Now we can form all possible combinations of \( \frac{p}{q} \): - When \( q = 1 \): \( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \) - When \( q = 2 \): \( \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{6}{2} (which is \pm 3) \) Now, combining these we get the full list of potential rational zeros: \[ \text{Possible rational zeros are } -1, 1, -2, 2, -3, 3, -4, 4, -6, 6, -12, 12, -\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}. \] So the correct answer among the options is **D**.
