Pregunta
upstudy study bank question image url

stem of linear equations shown below have a solution? Explain- \[ \left\{\begin{array}{l}x+7 y=8 \\ 7 x-y=-2\end{array}\right. \]

Ask by Moreno Luna. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has a unique solution: \( x = -\frac{3}{25} \) and \( y = \frac{29}{25} \).

Solución

To determine if the system has a solution, we can solve it by one of the methods (substitution or elimination) and also check if the equations are consistent. The system is:   1) x + 7y = 8   2) 7x − y = -2 Step 1. Solve the first equation for x:   x = 8 − 7y Step 2. Substitute x into the second equation:   7(8 − 7y) − y = -2 Step 3. Simplify and solve for y:   56 − 49y − y = -2   56 − 50y = -2   -50y = -2 − 56   -50y = -58   y = (-58) / (-50)   y = 29/25 Step 4. Substitute y = 29/25 back into x = 8 − 7y:   x = 8 − 7(29/25)   x = 8 − (203/25)   x = (200/25) − (203/25)   x = -3/25 Since we obtained a unique pair (x, y) = (-3/25, 29/25) that satisfies both equations, the system is consistent and independent. Therefore, the system does have a solution. In conclusion, the system has a unique solution: x = -3/25 and y = 29/25.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if the system of linear equations has a solution, we can analyze the equations. The first equation, \(x + 7y = 8\), can be rearranged to express \(x\) in terms of \(y\) as \(x = 8 - 7y\). The second equation, \(7x - y = -2\), can be rearranged to express \(y\) in terms of \(x\) as \(y = 7x + 2\). By substituting the expression for \(x\) into the second equation, we can find a specific point \((x, y)\) that satisfies both, indicating that the system has a solution. Let's actually solve it step-by-step. Substituting \(x = 8 - 7y\) into \(y = 7x + 2\) gives: \[y = 7(8 - 7y) + 2\] \[y = 56 - 49y + 2\] \[y + 49y = 58\] \[50y = 58\] Thus, \(y = \frac{58}{50} = \frac{29}{25}\). Now substitute \(y\) back into the first equation to find \(x\): \[x + 7\left(\frac{29}{25}\right) = 8\] \[x + \frac{203}{25} = 8\] \[x = 8 - \frac{203}{25} = \frac{200}{25} - \frac{203}{25} = -\frac{3}{25}\]. So, this system does indeed have a solution \(\left(-\frac{3}{25}, \frac{29}{25}\right)\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad