Pregunta
upstudy study bank question image url

Find the critical points of the following function. Use the Second Derivative Test to determine (if possible) whether each
critical point corresponds to a local maximum, local minimum, or saddle point. If the Second Derivative Test
is inconclusive, determine the behavior of the function at the critical points.

answer box within your choice.
A. The test shows that there is/are local minima at
(Type an ordered pair. Use a comma to separate answers as needed.)
B. The test does not reveal any local minima and there are no critical points for which the test is inconclusive, so
there are no local minima.
inconclusive.
Use the Second Derivative Test to find the saddle points. Select the correct choice below and, if necessary, fill in the the minima, but there is at least one critical point for which the test is
answer box within your choice.
A. There is/are saddle point(s) at
(Type an ordered pair. Use a comma to separate answers as needed.)
B. The test does not reveal any saddle points and there are no critical points for which the test is inconclusive, so
there are no saddle points.
C. The test does not reveal any saddle points, but there is at least one critical point for which the test is
inconclusive.

Ask by Norris Bond. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Local Minima:
B. There are no local minima.
Saddle Points:
A. There is a saddle point at (0,0).

Solución

Step 1. Find the critical points
The function is
Compute the partial derivatives:
Set the partial derivatives equal to zero:
Thus, the only critical point is .

Step 2. Use the Second Derivative Test
Find the second-order partial derivatives:
Compute the determinant of the Hessian matrix at the critical point :
Since , the Second Derivative Test indicates that the critical point is a saddle point.

Final Answers
  • Local Minima:
    B. The test does not reveal any local minima and there are no critical points for which the test is inconclusive, so there are no local minima.
  • Saddle Points:
    A. There is/are saddle point(s) at .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the critical points of the function , we first compute the partial derivatives:
Setting these equal to zero gives:
Thus, the critical point is .
Next, we use the Second Derivative Test. The second derivatives are:
Now we compute the determinant of the Hessian matrix:
Since , the test indicates that there is a saddle point at .
A. There is/are saddle point(s) at .
B. The test does not reveal any local minima, and since shows that this is a saddle point, there are no local minima.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad