Pregunta
- Use the precise (formal defition) of the limit to prove that
8.1.
8.2.
8.3.
8.1.
8.2.
Ask by Patel Crawford. in South Africa
Mar 29,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
8.1.
For every
, choose
. If
, then
.
8.2.
For every
, choose
. If
, then
.
8.3.
For every
, choose
. If
, then
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To approach these limit proofs using the formal definition, remember that the definition states: For a function
, we say
if, for every
, there exists a
such that whenever
, it follows that
.
Now, let’s prove each limit step by step!
-
Limit Calculation forLet
. We need to show that for any , we can find a such that if , then . First, rewrite the inequality:We want:Therefore, we can choose. Thus, for any , if , then . This proves that: -
Limit Calculation forUsing similar steps, set
. We need to show that . We can begin with:We desire:Choose. Thus, for any , if , then . Hence: -
Limit Calculation forLet
. We aim to prove . Start with:To ensure, we can first control . If we keep , then implies . Thus: To ensure this is less than: Therefore, for any, if , we have , confirming:
And there you have the proofs for all three limits using the formal definition!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium