Simplify the expression to \( a+ \) bi form: \[ \sqrt{1}+\sqrt{-50}-\sqrt{49}+\sqrt{-98} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To simplify the expression \( \sqrt{1}+\sqrt{-50}-\sqrt{49}+\sqrt{-98} \), we start with the individual square roots: 1. \( \sqrt{1} = 1 \) 2. \( \sqrt{-50} = \sqrt{50}i = \sqrt{25 \times 2}i = 5\sqrt{2}i \) 3. \( -\sqrt{49} = -7 \) (since \( \sqrt{49} = 7 \)) 4. \( \sqrt{-98} = \sqrt{98}i = \sqrt{49 \times 2}i = 7\sqrt{2}i \) Now, substituting these back into the expression, we get: \[ 1 + 5\sqrt{2}i - 7 + 7\sqrt{2}i \] Combining the real parts and the imaginary parts separately: Real part: \( 1 - 7 = -6 \) Imaginary part: \( 5\sqrt{2}i + 7\sqrt{2}i = 12\sqrt{2}i \) Putting it all together, we have: \[ -6 + 12\sqrt{2}i \] Thus, the expression simplified to \( a + bi \) form is: \[ -6 + 12\sqrt{2}i \]
