Pregunta
Let V be the volume of the cone. What is the objective function in terms of the height of the cone, h ? \( \mathrm{V}=\frac{\pi}{3}\left(225 \mathrm{~h}-\mathrm{h}^{3}\right) \) (Type an expression. Type an exact answer, using \( \pi \) as needed.) The interval of interest of the objective function is \( [0,225] \). (Simplify your answer. Type your answer in interval notation.)
Ask by Lyons Park. in the United States
Jan 09,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The objective function is \( V(h) = \frac{\pi}{3} (225h - h^3) \) and the interval of interest is \( [0, 225] \).
Solución
The objective function for the volume \( V \) of the cone in terms of the height \( h \) is:
\[
V(h) = \frac{\pi}{3} \left( 225\, h - h^3 \right)
\]
The interval of interest for the height \( h \) is:
\[
[0, 225]
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To express the volume \( V \) as a function of the height \( h \), we start with the given formula: \[ V = \frac{\pi}{3} (225h - h^3) \] This means that the objective function \( V(h) \) in terms of height \( h \) is: \[ V(h) = \frac{\pi}{3} (225h - h^3) \] Now, regarding the interval of interest for this function, since \( h \) represents the height of the cone, it must always lie within practical limits. Given the problem constraints, the interval in which we are analyzing the function is: \[ [0, 225] \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium