Pregunta
upstudy study bank question image url

(b) How many ways can you arrange the letters in the word STATISTICS? If all ar- rangements are equally likely, what is the probabilitiy the two 'i's are next to each other. (c) There are 3 arrangements of the word DAD, namely DAD, ADD, and DDA. How many arrangements are there of the word PROBABILITY? (d) In a ballroom dancing class the students are divided into group \( A \) and group \( B \). There are six people in group \( A \) and seven in group \( B \). If four \( A \) s and four \( B \mathrm{~s} \) are chosen and paired off, how many pairings are possible? (e) Let \( A \) and \( B \) be two events. Suppose the probability that neither \( A \) or \( B \) occurs is \( 2 / 3 \). What is the probability that one or both occur? (f) Let \( C \) and \( D \) be two events with \( P(C)=0.25, P(D)=0.45 \), and \( P(C \cap D)=0.1 \). What is \( P\left(C^{c} \cap D\right) \) ?

Ask by Macdonald Carlson. in Zambia
Nov 17,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(b) Total arrangements: 50400; Probability II together: \( \frac{1}{5} \) (c) Arrangements of "PROBABILITY": 9979200 (d) Total pairings: 12600 (e) Probability of A or B: \( \frac{1}{3} \) (f) \( P(C^c \cap D) = 0.35 \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

The arrangements of the letters in the word "STATISTICS" can be computed using the factorial formula, considering the repeated letters. The word "STATISTICS" consists of 10 letters with specific frequencies: S (3), T (3), A (1), I (2), C (1). The total number of distinct arrangements is calculated as \( \frac{10!}{3! \cdot 3! \cdot 2! \cdot 1! \cdot 1!} = 16800 \). To find the probability that the two 'i's are next to each other, we can treat the two 'i's as a single unit, giving us the letters: "SSTTACCI" which includes 9 units. The arrangements become \( \frac{9!}{3! \cdot 3! \cdot 1! \cdot 1!} = 8400 \). Thus, the probability is \( \frac{8400}{16800} = \frac{1}{2} \). When arranging the letters in the word "PROBABILITY", we take into account the counts of each letter: P (1), R (1), O (1), B (2), A (1), I (1), L (1), T (1), Y (1). This leads to a total arrangement count of \( \frac{11!}{2!} = 19958400 \) due to the two 'B's. To calculate the number of pairings between groups \( A \) and \( B \), first choose 4 people from each group. The combinations for choosing 4 from 6 in group \( A \) is \( \binom{6}{4} = 15 \) and from group \( B \) is \( \binom{7}{4} = 35 \). After selection, the number of ways to pair is \( 4! = 24 \). Therefore, the total number of pairings is \( 15 \times 35 \times 24 = 12600 \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad