Pregunta
upstudy study bank question image url

The first three terms of a geometric sequence are given: \( \quad 81 ; m ; \frac{m}{3} ; \ldots \ldots \) 3.1.1 \( \quad \) Determine the value of \( m \). 3.1.2 \( \quad \) Calculate: \( \sum_{t=1}^{9} 81\left(\frac{1}{3}\right)^{t-1} \) Given the arithmetic sequence: \( \frac{12}{5} ; 3 ; \frac{18}{5} ; \ldots . . . . . . . . . . . . . . . . ; \frac{333}{5} \) 3.2.1 \( \quad \) Calculate the number of terms in this sequence. 3.2.2 How many terms of this sequence are integers?

Ask by Dickson Ramos. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

3.1.1 \( m = 27 \) 3.1.2 The sum is \( \frac{243}{2} \times \left(1 - \frac{1}{19683}\right) \) 3.2.1 There are 108 terms in the sequence. 3.2.2 There are 22 integer terms in the sequence.

Solución

We are given a geometric sequence with the first three terms:   81 ; m ; m/3 ; … Step 1: Find m (3.1.1) In any geometric sequence, the ratio between consecutive terms is constant. Let r be the common ratio. Then we have:   1st term: a₁ = 81   2nd term: a₂ = 81 · r = m   3rd term: a₃ = 81 · r² = m/3 Using the fact that m = 81r, substitute into the expression for a₃:   81 · r² = (81r)/3 Divide both sides by 81 (since 81 ≠ 0):   r² = r/3 If r ≠ 0, divide both sides by r:   r = 1/3 Then m = 81 · (1/3) = 27. So, the value of m is 27. Step 2: Calculate the sum (3.1.2) We need to calculate:   S = Σₜ₌₁⁹ 81 · (1/3)^(t–1) This is a geometric series with first term a = 81 and common ratio r = 1/3. The sum of the first n terms of a geometric series is given by:   Sₙ = a · (1 – rⁿ) / (1 – r) For n = 9:   S₉ = 81 · (1 – (1/3)⁹) / (1 – 1/3) Since 1 – 1/3 = 2/3, we have:   S₉ = 81 · (1 – (1/3)⁹) / (2/3) = 81 · (3/2) · (1 – (1/3)⁹) Thus, the sum is:   S₉ = (243/2) · [1 – (1/3)⁹] You can leave the answer in this form or, if desired, express (1/3)⁹ = 1/19683. Step 3: Work with the arithmetic sequence We are given the arithmetic sequence:   12/5 ; 3 ; 18/5 ; … ; 333/5 Part 3.2.1: Find the number of terms. Write the first term in fifths:   a₁ = 12/5   Second term, 3 = 15/5 Thus, the common difference d = 15/5 – 12/5 = 3/5. Let n be the number of terms. The nth term of an arithmetic sequence is given by:   aₙ = a₁ + (n – 1)d The last term is given as 333/5, so:   12/5 + (n – 1)·(3/5) = 333/5 Multiply through by 5 to eliminate fractions:   12 + 3(n – 1) = 333 Solve for n:   3(n – 1) = 333 – 12 = 321   n – 1 = 321/3 = 107   n = 107 + 1 = 108 So, there are 108 terms in the arithmetic sequence. Part 3.2.2: Find how many terms are integers. A general term of the sequence is:   aₙ = 12/5 + (n – 1)·(3/5) = [12 + 3(n – 1)] / 5 Simplify the numerator:   12 + 3(n – 1) = 3n + 9     (since 3(n – 1) = 3n – 3, and 12 – 3 = 9) Thus:   aₙ = (3n + 9) / 5 = 3(n + 3)/5 For aₙ to be an integer, the fraction must simplify to an integer. Since 3 and 5 are relatively prime, 5 must divide (n + 3). That is:   n + 3 ≡ 0 (mod 5)   n ≡ 2 (mod 5) Now we need to count the number of integers n in the range 1 ≤ n ≤ 108 such that n ≡ 2 (mod 5). Write n in the form:   n = 5k + 2, where k is an integer. Find the smallest and largest k:   For the smallest term, when k = 0, n = 2 (which is ≥ 1)   For the largest term, n = 5k + 2 ≤ 108 ⇒ 5k ≤ 106 ⇒ k ≤ 106/5 = 21.2, so the largest integer k is 21. The values of k range from 0 to 21 inclusive, which gives:   Number of terms = 21 – 0 + 1 = 22 Thus, 22 terms of the arithmetic sequence are integers. Final Answers: • 3.1.1: m = 27. • 3.1.2: The sum is (243/2) · [1 – (1/3)⁹] or equivalently (243/2)[1 – 1/19683]. • 3.2.1: The number of terms is 108. • 3.2.2: The number of integer terms is 22.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the value of \( m \) in the geometric sequence \( 81, m, \frac{m}{3} \), we know that the ratio between successive terms should be constant. So, the ratio \( r = \frac{m}{81} = \frac{m/3}{m} \) leads us to \( 3r = 1 \) or \( r = \frac{1}{3} \). Thus, \( m = 81 \cdot \frac{1}{3} = 27 \). Now calculating \( \sum_{t=1}^{9} 81\left(\frac{1}{3}\right)^{t-1} \), this is the sum of a geometric series where the first term \( a = 81 \) and the common ratio \( r = \frac{1}{3} \). The sum of the first \( n \) terms of a geometric series can be computed using the formula \( S_n = a \frac{1 - r^n}{1 - r} \). Therefore, substituting gives us \( S_9 = 81 \frac{1 - \left(\frac{1}{3}\right)^9}{1 - \frac{1}{3}} = 81 \frac{1 - \frac{1}{19683}}{\frac{2}{3}} \approx 121.5 \). To determine the number of terms in the arithmetic sequence \( \frac{12}{5}, 3, \frac{18}{5}, \ldots, \frac{333}{5} \), the first term \( a = \frac{12}{5} \) and the common difference \( d = 3 - \frac{12}{5} = \frac{3}{5} \). The \( n \)-th term can be expressed as \( a_n = a + (n-1)d \). Setting \( a_n = \frac{333}{5} \) leads to the equation \( \frac{12}{5} + (n-1) \frac{3}{5} = \frac{333}{5} \). Simplifying gives \( (n-1) = 105 \) or \( n = 106 \). Next, to find how many terms of this arithmetic sequence are integers, we note that \( a_n = \frac{12}{5} + (n-1) \frac{3}{5} \) must be an integer. This necessitates \( n - 1 \) to be such that \( n - 1 = 5k \) where \( k \) is an integer. Since \( 1 \leq n \leq 106\), \( n - 1\) ranges from \( 0 \) to \( 105 \). This means \( n - 1\) could indeed be any of \( 0, 5, 10, \ldots, 105 \) yielding \( 22 \) integer terms in total!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad