Pregunta
Simplify. \[ \frac{\frac{5 x^{2}}{x+2}}{\frac{x+5}{x+2}} \] \[ \]
Ask by Ford Mccarthy. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified expression is \( \frac{5x^{2}}{x + 5} \).
Solución
We start with the expression:
( (5x²)/(x + 2) ) ÷ ( (x + 5)/(x + 2) ).
Dividing by a fraction is equivalent to multiplying by its reciprocal, so we have:
(5x²)/(x + 2) × (x + 2)/(x + 5).
Now, the (x + 2) in the numerator and denominator cancels out, leaving:
5x²/(x + 5).
Thus, the simplified expression is:
5x²/(x + 5).
(Note: To ensure that we do not divide by zero, it is assumed that x ≠ −2 and x ≠ −5.)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To simplify the expression \[ \frac{\frac{5 x^{2}}{x+2}}{\frac{x+5}{x+2}}, \] we start by rewriting it as a multiplication of the first fraction by the reciprocal of the second fraction: \[ \frac{5 x^{2}}{x+2} \times \frac{x+2}{x+5}. \] Now, we can see that the \(x+2\) in the numerator of the first fraction and the \(x+2\) in the denominator of the second fraction cancel out: \[ \frac{5 x^{2}}{1} \times \frac{1}{x+5} = \frac{5 x^{2}}{x+5}. \] Therefore, the simplified expression is: \[ \frac{5 x^{2}}{x+5}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium