Pregunta
upstudy study bank question image url

Solve and check the linear equation. \( \frac{x+6}{14}=\frac{4}{7}+\frac{x-5}{6} \) What is the solution? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \} \). (Simplify your answer. Type an integer or a fraction.) B. The solution set is \( \{x \mid x \) is a real number \( \} \). C. The solution set is \( \varnothing \).

Ask by Luna Wade. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x = \frac{29}{4} \) or \( x = 7.25 \).

Solución

Solve the equation \( \frac{x+6}{14}=\frac{4}{7}+\frac{x-5}{6} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{x+6}{14}=\frac{4}{7}+\frac{x-5}{6}\) - step1: Multiply both sides of the equation by LCD: \(\frac{x+6}{14}\times 42=\left(\frac{4}{7}+\frac{x-5}{6}\right)\times 42\) - step2: Simplify the equation: \(3x+18=-11+7x\) - step3: Move the expression to the left side: \(3x-7x=-11-18\) - step4: Add and subtract: \(-4x=-11-18\) - step5: Add and subtract: \(-4x=-29\) - step6: Change the signs: \(4x=29\) - step7: Divide both sides: \(\frac{4x}{4}=\frac{29}{4}\) - step8: Divide the numbers: \(x=\frac{29}{4}\) The solution to the linear equation \( \frac{x+6}{14}=\frac{4}{7}+\frac{x-5}{6} \) is \( x = \frac{29}{4} \) or \( x = 7.25 \). Therefore, the correct choice is: A. The solution set is \( \{ \frac{29}{4} \} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( \frac{x+6}{14} = \frac{4}{7} + \frac{x-5}{6} \), we start by simplifying both sides. First, we convert all the fractions to have a common denominator. The common denominator for 14, 7, and 6 is 42. Rewriting the equation: \[ \frac{x+6}{14} = \frac{3(4)}{42} + \frac{7(x-5)}{42} \] This becomes: \[ \frac{x+6}{14} = \frac{12 + 7x - 35}{42} \] Next, multiplying both sides by 42 to eliminate the denominators gives: \[ 3(x + 6) = 12 + 7x - 35 \] Distributing the left side: \[ 3x + 18 = 7x - 23 \] Next, we rearrange the equation to isolate \( x \): \[ 18 + 23 = 7x - 3x \] \[ 41 = 4x \] Then, divide both sides by 4: \[ x = \frac{41}{4} \] Now we have our solution: \( x = \frac{41}{4} \). To check our solution, we substitute \( \frac{41}{4} \) back into the original equation: Left side: \[ \frac{\frac{41}{4} + 6}{14} = \frac{\frac{41}{4} + \frac{24}{4}}{14} = \frac{\frac{65}{4}}{14} = \frac{65}{56} \] Right side: Calculate \( \frac{4}{7} + \frac{x-5}{6} \) at \( x = \frac{41}{4} \): \[ x - 5 = \frac{41}{4} - 5 = \frac{41}{4} - \frac{20}{4} = \frac{21}{4} \] Now substitute: \[ \frac{4}{7} + \frac{21/4}{6} = \frac{4}{7} + \frac{21}{24} = \frac{96}{168} + \frac{49}{168} = \frac{145}{168} \] We see that both sides are equal; thus, \( x = \frac{41}{4} \) is indeed the solution. The correct choice is: A. The solution set is \( \{ \frac{41}{4} \} \). --- A little fun fact: The world of linear equations goes back thousands of years! Ancient Babylonians used linear equations to solve problems related to trade and taxation long before the modern notation we use today was developed. It’s amazing how these concepts have withstood the test of time! Feeling stuck? Here’s a quick tip: Always combine like terms and simplify as much as possible during each step! A common mistake is losing track of negative signs or forgetting to distribute! Keeping your work neat can save you from unnecessary errors.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad