Pregunta
upstudy study bank question image url

(Chapters 5 thru 8 ) This test: 20 point(s) possible For a lottery game, a player must match a sequence of three repeatable numbers, ranging from 0 to 9 , in exact order (for example, 3-7-2). With a single ticket, what is the probability of matching the three winning numbers?

Ask by Reeves Willis. in the United States
Nov 17,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of matching the three winning numbers is \(\frac{1}{1000}\) or 0.001.

Solución

To determine the probability of matching the three winning numbers in a lottery game where each number can range from 0 to 9, we first need to calculate the total number of possible combinations of three numbers. Since each of the three numbers can be any digit from 0 to 9, there are 10 possible choices for each number. Therefore, the total number of combinations for the three numbers is calculated as follows: \[ \text{Total combinations} = 10 \times 10 \times 10 = 10^3 = 1000 \] Now, since there is only one winning combination (the specific sequence of three numbers drawn), the probability of matching the winning numbers with a single ticket is given by the ratio of the number of successful outcomes (1) to the total number of possible outcomes (1000): \[ \text{Probability} = \frac{\text{Number of successful outcomes}}{\text{Total number of outcomes}} = \frac{1}{1000} \] Thus, the probability of matching the three winning numbers with a single ticket is: \[ \frac{1}{1000} \text{ or } 0.001 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To figure out the probability of matching the three winning numbers in a lottery game where each number ranges from 0 to 9, we can start by acknowledging that each digit has 10 possible values (0 through 9). Since the player must correctly guess all three numbers in the exact sequence, the total number of possible combinations is 10 (for the first number) × 10 (for the second number) × 10 (for the third number), which equals 1,000 possible sequences. Therefore, the probability of matching the exact sequence of three numbers with a single ticket is 1 in 1,000, or 0.001. This means there's a 0.1% chance of winning with just one ticket. Not too high, but hey, someone's got to win eventually, right? Good luck!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad