Pregunta
upstudy study bank question image url

Calculate the expected value E of a random variable W . Identify the possible outcomes of random variable \( W \) with respective Wrobabilities of occurring \( P(W) \) simplify. P(red) \( =\frac{9}{19} \) Multiply and determine the anticipated result. \( -\$ 0.09 \times 7=-\$ 0.63 \) Use the Complement Rule of Probability of the ball landing on a red pocket; make sure to the probability of not Ianding on a red pocket. Identify the key information: There are 38 possible pockets on the wheel, two green pockets containing zeros, and 18 red pockets.

Ask by Coleman Campbell. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expected value \( E(W) \) is approximately \( -0.0426 \) dollars.

Solución

To calculate the expected value \( E \) of the random variable \( W \), we need to follow these steps: 1. **Identify the possible outcomes and their probabilities**: - The outcomes are based on the color of the pocket where the ball lands. - There are 38 pockets in total: 18 red, 20 non-red (which includes 2 green and 18 black). 2. **Calculate the probabilities**: - The probability of landing on a red pocket is given as \( P(\text{red}) = \frac{9}{19} \). - The probability of not landing on a red pocket (using the complement rule) is: \[ P(\text{not red}) = 1 - P(\text{red}) = 1 - \frac{9}{19} = \frac{10}{19} \] 3. **Define the outcomes for the random variable \( W \)**: - Let \( W \) represent the winnings based on the outcome: - If the ball lands on red, the outcome is \( W = -0.09 \) (loss). - If the ball does not land on red, the outcome is \( W = 0 \) (no loss). 4. **Calculate the expected value \( E(W) \)**: - The expected value is calculated as follows: \[ E(W) = P(\text{red}) \cdot W_{\text{red}} + P(\text{not red}) \cdot W_{\text{not red}} \] - Substituting the values: \[ E(W) = \left(\frac{9}{19} \cdot (-0.09)\right) + \left(\frac{10}{19} \cdot 0\right) \] Now, let's perform the calculation for \( E(W) \). ### Calculation We will calculate \( E(W) \) using the expression derived above. \[ E(W) = \frac{9}{19} \cdot (-0.09) + \frac{10}{19} \cdot 0 \] This simplifies to: \[ E(W) = \frac{9}{19} \cdot (-0.09) \] Now, let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{9}{19}\left(-0.09\right)\) - step1: Convert the expressions: \(\frac{9}{19}\left(-\frac{9}{100}\right)\) - step2: Multiply the fractions: \(\frac{9\left(-9\right)}{19\times 100}\) - step3: Multiply the terms: \(\frac{-81}{19\times 100}\) - step4: Multiply the terms: \(\frac{-81}{1900}\) - step5: Multiply the numbers: \(-\frac{81}{1900}\) The expected value \( E(W) \) is calculated as follows: \[ E(W) = \frac{9}{19} \cdot (-0.09) \approx -0.042632 \] Thus, the expected value \( E(W) \) is approximately \( -0.0426 \). ### Summary of Key Information: - Probability of landing on a red pocket: \( P(\text{red}) = \frac{9}{19} \) - Probability of not landing on a red pocket: \( P(\text{not red}) = \frac{10}{19} \) - Expected value \( E(W) \approx -0.0426 \) This means that, on average, you can expect to lose about \( 0.0426 \) dollars per game played under these conditions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the expected value \( E(W) \), you first identify the possible outcomes of the random variable \( W \). In this case, they are landing on red pockets and not landing on red pockets. The probabilities are \( P(W = \text{red}) = \frac{9}{19} \) and \( P(W \neq \text{red}) = 1 - P(W = \text{red}) = \frac{10}{19} \). So you have your outcomes tied to their probabilities: winning $0.09 when the ball lands on red, and losing a different amount (which may be subtracted from your winnings). After multiplying your winnings by the respective probabilities and summing those values, you'll arrive at the expected value \( E(W) \). You can also think about how this applies in a casino setting! When gambling with such a wheel, knowing the odds helps you make more informed bets. Understanding the expected values behind different outcomes can guide your strategy, whether you're mulling over a spin or deciding which pocket to place your chips on—whether in red or green!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad