5. Considering the arithmetic sequence: \( 11 \frac{1}{2}, 9 \frac{5}{16}, 7 \frac{1}{8}, \ldots \) If the first three terms are shown, what is the fifth term?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the fifth term of the arithmetic sequence, we first need to determine the common difference. 1. Convert the mixed numbers to improper fractions: - \( 11 \frac{1}{2} = \frac{23}{2} \) - \( 9 \frac{5}{16} = \frac{149}{16} \) - \( 7 \frac{1}{8} = \frac{57}{8} \) Now, we'll express all terms with a common denominator. The least common multiple of 2, 16, and 8 is 16. So let's convert everything to have a denominator of 16: - First term: \( \frac{23}{2} = \frac{23 \times 8}{2 \times 8} = \frac{184}{16} \) - Second term: \( \frac{149}{16} \) - Third term: \( \frac{57}{8} = \frac{57 \times 2}{8 \times 2} = \frac{114}{16} \) 2. Find the common difference: - \( \text{Second term} - \text{First term} = \frac{149}{16} - \frac{184}{16} = \frac{-35}{16} \) - \( \text{Third term} - \text{Second term} = \frac{114}{16} - \frac{149}{16} = \frac{-35}{16} \) So, the common difference \( d = \frac{-35}{16} \). 3. Now, we calculate the fourth and fifth terms: - Fourth term: \( \text{Third term} + d = \frac{114}{16} + \frac{-35}{16} = \frac{114 - 35}{16} = \frac{79}{16} \) - Fifth term: \( \text{Fourth term} + d = \frac{79}{16} + \frac{-35}{16} = \frac{79 - 35}{16} = \frac{44}{16} = \frac{11}{4} \) Therefore, the fifth term of the sequence is \( \frac{11}{4} \) or \( 2 \frac{3}{4} \).
