Pregunta
upstudy study bank question image url

5. Considering the arithmetic sequence: \( 11 \frac{1}{2}, 9 \frac{5}{16}, 7 \frac{1}{8}, \ldots \) If the first three terms are shown, what is the fifth term?

Ask by Macdonald Perkins. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The fifth term of the sequence is \( 2 \frac{3}{4} \).

Solución

To find the fifth term of the arithmetic sequence given by the first three terms \( 11 \frac{1}{2}, 9 \frac{5}{16}, 7 \frac{1}{8} \), we first need to determine the common difference of the sequence. 1. **Convert the mixed numbers to improper fractions:** - The first term \( 11 \frac{1}{2} \) can be converted as follows: \[ 11 \frac{1}{2} = \frac{11 \times 2 + 1}{2} = \frac{22 + 1}{2} = \frac{23}{2} \] - The second term \( 9 \frac{5}{16} \) can be converted as follows: \[ 9 \frac{5}{16} = \frac{9 \times 16 + 5}{16} = \frac{144 + 5}{16} = \frac{149}{16} \] - The third term \( 7 \frac{1}{8} \) can be converted as follows: \[ 7 \frac{1}{8} = \frac{7 \times 8 + 1}{8} = \frac{56 + 1}{8} = \frac{57}{8} \] 2. **Calculate the common difference \( d \):** - The common difference can be found by subtracting the first term from the second term: \[ d = 9 \frac{5}{16} - 11 \frac{1}{2} = \frac{149}{16} - \frac{23}{2} \] - To perform this subtraction, we need a common denominator. The least common multiple of 16 and 2 is 16. Thus, we convert \( \frac{23}{2} \) to sixteenths: \[ \frac{23}{2} = \frac{23 \times 8}{2 \times 8} = \frac{184}{16} \] - Now we can subtract: \[ d = \frac{149}{16} - \frac{184}{16} = \frac{149 - 184}{16} = \frac{-35}{16} \] 3. **Find the fifth term:** - The fifth term can be calculated using the formula for the \( n \)-th term of an arithmetic sequence: \[ a_n = a_1 + (n-1)d \] - Here, \( a_1 = \frac{23}{2} \), \( d = \frac{-35}{16} \), and \( n = 5 \): \[ a_5 = \frac{23}{2} + (5-1) \cdot \frac{-35}{16} \] - Simplifying this: \[ a_5 = \frac{23}{2} + 4 \cdot \frac{-35}{16} = \frac{23}{2} - \frac{140}{16} \] - Convert \( \frac{23}{2} \) to sixteenths: \[ \frac{23}{2} = \frac{23 \times 8}{2 \times 8} = \frac{184}{16} \] - Now we can subtract: \[ a_5 = \frac{184}{16} - \frac{140}{16} = \frac{184 - 140}{16} = \frac{44}{16} = \frac{11}{4} \] 4. **Convert back to a mixed number:** - The fifth term \( \frac{11}{4} \) can be expressed as a mixed number: \[ \frac{11}{4} = 2 \frac{3}{4} \] Thus, the fifth term of the arithmetic sequence is \( 2 \frac{3}{4} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the fifth term of the arithmetic sequence, we first need to determine the common difference. 1. Convert the mixed numbers to improper fractions: - \( 11 \frac{1}{2} = \frac{23}{2} \) - \( 9 \frac{5}{16} = \frac{149}{16} \) - \( 7 \frac{1}{8} = \frac{57}{8} \) Now, we'll express all terms with a common denominator. The least common multiple of 2, 16, and 8 is 16. So let's convert everything to have a denominator of 16: - First term: \( \frac{23}{2} = \frac{23 \times 8}{2 \times 8} = \frac{184}{16} \) - Second term: \( \frac{149}{16} \) - Third term: \( \frac{57}{8} = \frac{57 \times 2}{8 \times 2} = \frac{114}{16} \) 2. Find the common difference: - \( \text{Second term} - \text{First term} = \frac{149}{16} - \frac{184}{16} = \frac{-35}{16} \) - \( \text{Third term} - \text{Second term} = \frac{114}{16} - \frac{149}{16} = \frac{-35}{16} \) So, the common difference \( d = \frac{-35}{16} \). 3. Now, we calculate the fourth and fifth terms: - Fourth term: \( \text{Third term} + d = \frac{114}{16} + \frac{-35}{16} = \frac{114 - 35}{16} = \frac{79}{16} \) - Fifth term: \( \text{Fourth term} + d = \frac{79}{16} + \frac{-35}{16} = \frac{79 - 35}{16} = \frac{44}{16} = \frac{11}{4} \) Therefore, the fifth term of the sequence is \( \frac{11}{4} \) or \( 2 \frac{3}{4} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad