Find the domain of the function. \( f(x)=\frac{4}{\sqrt{x-5}} \) The domain is \( \square \). (Type your answer in interval notation.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
For the function \( f(x) = \frac{4}{\sqrt{x-5}} \), the expression under the square root must be greater than zero to keep the function defined. This means we need \( x - 5 > 0 \), which simplifies to \( x > 5 \). Therefore, the domain of the function is \( (5, \infty) \). Remember, any value of \( x \) that is 5 or less makes the expression under the square root negative or zero, which isn't allowed when working with square roots in the denominator! So, always check for those values when determining domain!
