(a) The triangle ABC of area 11 square units is mapped into triangle \( \mathrm{A}^{l} \mathrm{~B}^{l} \mathrm{C}^{l} \) by \( \mathrm{M}=\left(\begin{array}{ll}3 & 2 \\ 1 & 5\end{array}\right) \). Find the area of triangle \( A^{1} B^{1} C^{1} \). [2] (b) The point \( \binom{x}{y} \) is transformed by \( \binom{x}{y}: \mapsto\left(\begin{array}{ll}-2 & 2 \\ -2 & 3\end{array}\right)\binom{x}{y} \). Find the equations of lines which are mapped onto themselves. [7] (c) Given that \( \mathrm{A}^{-1}=\left(\begin{array}{ccc}-1 & -2 & 2 \\ 2 & 5 & -4 \\ 1 & 1 & -1\end{array}\right), \mathrm{B}^{-1}=\left(\begin{array}{ccc}3 & -3 & 3 \\ -1 & 1 & 1 \\ 2 & 4 & -2\end{array}\right) \) and that \( \mathrm{AB}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}12 \\ 0 \\ 0\end{array}\right) \), find \( x, y \) and \( z \). 6 The point P has position vector \( \boldsymbol{i}+3 \boldsymbol{j}+3 \boldsymbol{k} \), the line \( l \) has an equation \( r=i+5 j-k+t(i-j+k) \) and the plane \( \pi \) has an equation \( r=5 i+5 k+\lambda(2 i+j)+\mu(2 i+j+4 k) \). (i) Find the point of intersection of \( l \) and \( \pi \). [4] (ii) Find the length of the perpendicular from P to \( \pi \). [5] (iii) Find the length of the perpendicular from P to \( l \). [4] (iv) Find the acute angle between \( l \) and \( \pi \), correct to the nearest \( 0.1^{\circ} \). [3]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
The area of triangle \( A^{1} B^{1} C^{1} \) after the transformation \( M= \begin{pmatrix} 3 & 2 \\ 1 & 5 \end{pmatrix} \) can be found by scaling the original area by the absolute value of the determinant of the transformation matrix. The determinant is calculated as \( \text{det}(M) = (3)(5) - (2)(1) = 15 - 2 = 13 \). Thus, the area becomes \( 11 \times 13 = 143 \) square units. To find the equations of lines that map onto themselves via the transformation \( \begin{pmatrix} -2 & 2 \\ -2 & 3 \end{pmatrix} \), we need the eigenvalues and eigenvectors of the matrix. The eigenvalues are the solutions to the characteristic equation \( \text{det}(A - \lambda I) = 0 \). Solving gives us \( \lambda = 1 \) (with multiplicity) as a self-mapping line, corresponding to directions defined by the eigenvectors. The eigenvector can be found, leading to the equations of the lines that maintain their positions under the transformation.
