Pregunta
upstudy study bank question image url

Factor out the greatest common monomial \[ 6 x^{2}+3 x^{3} \]

Ask by Paul Gibson. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expression \( 6x^{2} + 3x^{3} \) factors to \( 3x^{2}(x + 2) \).

Solución

To factor out the greatest common monomial (GCM) from the expression \( 6x^{2} + 3x^{3} \), follow these steps: 1. **Identify the GCM of the coefficients:** - The coefficients are 6 and 3. - The greatest common factor (GCF) of 6 and 3 is **3**. 2. **Identify the GCM of the variable parts:** - The terms are \( x^{2} \) and \( x^{3} \). - The smallest power of \( x \) present in both terms is \( x^{2} \). 3. **Combine the GCF and the variable part:** - The GCM is \( 3x^{2} \). 4. **Factor out the GCM from each term:** \[ 6x^{2} + 3x^{3} = 3x^{2}(2) + 3x^{2}(x) = 3x^{2}(2 + x) \] **Final Factored Form:** \[ 3x^{2}(x + 2) \] Answer: After factoring, the expression is equal to three x squared times (x plus two): 3 x² (x + 2)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To factor out the greatest common monomial from the expression \( 6x^{2} + 3x^{3} \), first identify the coefficients and the variable components. The greatest common factor of the coefficients \(6\) and \(3\) is \(3\). For the variable part, both terms share \(x^{2}\) as the lowest power of \(x\). Combining these, we can factor out \(3x^{2}\): \[ 6x^{2} + 3x^{3} = 3x^{2}(2 + x) \] Now the expression is neatly factored! Factoring is like breaking a secret code; it reveals the underlying structure of the expression! Just as detectives piece together clues to solve a mystery, you uncover the common elements in polynomials to simplify and facilitate further operations. If you're looking for practical applications, this skill is crucial not only in algebra but also in fields like engineering and economics, where simplifying expressions can make calculations much easier, allowing us to analyze complex situations or design efficient systems without getting tangled in cumbersome equations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad