Pregunta
upstudy study bank question image url

Solving Systems of Equations by Graphing Solve each swstem by graphing. \( \begin{array}{ll}\text { 1) } y=-\frac{5}{3} x+3-\frac{6}{3} x+3=\frac{1}{3} x-3 & \text { 2) } y=4 x+3 \\ y=\frac{1}{3} x-3 & x=1\end{array} \)

Ask by Gordon Gordon. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: 1. \( (0, 3) \) 2. \( (1, 7) \)

Solución

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=4x+3\\x=1\end{array}\right.\) - step1: Substitute the value of \(x:\) \(y=4\times 1+3\) - step2: Simplify: \(y=7\) - step3: Calculate: \(\left\{ \begin{array}{l}x=1\\y=7\end{array}\right.\) - step4: Check the solution: \(\left\{ \begin{array}{l}x=1\\y=7\end{array}\right.\) - step5: Rewrite: \(\left(x,y\right) = \left(1,7\right)\) Solve the system of equations \( y=-\frac{5}{3} x+3; y=-\frac{1}{3} x+3 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=-\frac{5}{3}x+3\\y=-\frac{1}{3}x+3\end{array}\right.\) - step1: Substitute the value of \(y:\) \(-\frac{5}{3}x+3=-\frac{1}{3}x+3\) - step2: Cancel equal terms: \(-\frac{5}{3}x=-\frac{1}{3}x\) - step3: Add or subtract both sides: \(-\frac{5}{3}x-\left(-\frac{1}{3}x\right)=0\) - step4: Subtract the terms: \(-\frac{4}{3}x=0\) - step5: Change the signs: \(\frac{4}{3}x=0\) - step6: Rewrite the expression: \(x=0\) - step7: Substitute the value of \(x:\) \(y=-\frac{5}{3}\times 0+3\) - step8: Substitute back: \(y=3\) - step9: Calculate: \(\left\{ \begin{array}{l}x=0\\y=3\end{array}\right.\) - step10: Check the solution: \(\left\{ \begin{array}{l}x=0\\y=3\end{array}\right.\) - step11: Rewrite: \(\left(x,y\right) = \left(0,3\right)\) Let's solve the systems of equations step by step by graphing. ### System 1: The equations are: 1. \( y = -\frac{5}{3} x + 3 \) 2. \( y = -\frac{1}{3} x + 3 \) To find the intersection point, we can set the two equations equal to each other: \[ -\frac{5}{3} x + 3 = -\frac{1}{3} x + 3 \] By simplifying, we can see that both equations intersect at the point where \( x = 0 \). Substituting \( x = 0 \) into either equation gives: \[ y = -\frac{5}{3}(0) + 3 = 3 \] Thus, the solution for the first system is: \[ (x, y) = (0, 3) \] ### System 2: The equations are: 1. \( y = 4x + 3 \) 2. \( x = 1 \) Since the second equation is a vertical line at \( x = 1 \), we can substitute \( x = 1 \) into the first equation to find \( y \): \[ y = 4(1) + 3 = 4 + 3 = 7 \] Thus, the solution for the second system is: \[ (x, y) = (1, 7) \] ### Summary of Solutions: 1. For the first system: \( (x, y) = (0, 3) \) 2. For the second system: \( (x, y) = (1, 7) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the first system by graphing, let's rearrange the equations. The first equation simplifies to \( y = -\frac{5}{3}x + 1 \), and the second equation is already in slope-intercept form. Now, plot both lines on a graph. The intersection point of both lines will give you the solution to the system. For the second system, we have the linear equation \( y = 4x + 3 \) and a vertical line \( x = 1 \). Substitute \( x = 1 \) into the first equation to find \( y = 4(1) + 3 = 7 \). Therefore, the solution is the point (1, 7).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad