Find an equivalent algebraic expression by applying the distributive property. \( \begin{array}{l}g(g-3) \\ 2 g-3 g \\ g^{2}-3 \\ 2 g-3 \\ g^{2}-3 g\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find an equivalent algebraic expression using the distributive property, let’s analyze the expression step-by-step. First, if we distribute \( g \) in \( g(g - 3) \), we multiply \( g \) by each term inside the parentheses: \[ g \cdot g - g \cdot 3 = g^2 - 3g. \] For the second option, \( 2g - 3g \) simplifies to \( (2 - 3)g = -g \), which isn't directly the result from the first expression. The fourth option \( 2g - 3 \) does not involve the distributive property and simply is a linear expression. Thus, the expression that results from applying the distributive property to \( g(g - 3) \) is indeed \( g^2 - 3g \), which corresponds perfectly with the last option listed. So, our equivalent expression is: \( g^2 - 3g \).
