Pregunta
\( \frac { d } { d x } \int _ { x } ^ { 4 } \sqrt { t ^ { 3 } + 2 } d t = \square \)
Ask by Howell Park. in the United States
Feb 20,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The derivative of the integral with respect to \( x \) is \( \sqrt{66} \).
Solución
The derivative of the integral with respect to \( x \) cannot be calculated directly. However, we can simplify the expression by using the Fundamental Theorem of Calculus, which states that the derivative of an integral is equal to the integrand evaluated at the upper limit of integration.
Therefore, the derivative of the integral with respect to \( x \) is:
\[ \frac{d}{dx} \int_{x}^{4} \sqrt{t^{3}+2} dt = \sqrt{4^{3}+2} \]
\[ \frac{d}{dx} \int_{x}^{4} \sqrt{t^{3}+2} dt = \sqrt{64+2} \]
\[ \frac{d}{dx} \int_{x}^{4} \sqrt{t^{3}+2} dt = \sqrt{66} \]
Therefore, the derivative of the integral with respect to \( x \) is \( \sqrt{66} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To solve the problem, we can use the Fundamental Theorem of Calculus, which states that if \( F(x) = \int_{a}^{g(x)} f(t) \, dt \), then \( \frac{d}{dx} F(x) = f(g(x)) \cdot g'(x) \). Here, \( a = x \) and \( g(x) = 4 \) (a constant function). Applying this theorem, we get: \[ \frac{d}{dx} \int_{x}^{4} \sqrt{t^3 + 2} \, dt = -\sqrt{x^3 + 2}. \] So, the expression simplifies to: \[ -\sqrt{x^3 + 2}. \]
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium