Jennifer deposited \( \$ 3200 \) into an account earning \( 4.2 \% \), compounded monthly. Assuming no withdrawals or deposits are made, how long will it take for the investment to grow to \( \$ 10,000 \). Rounded to the nearest hundredth.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find out how long it will take for Jennifer's investment to grow from \( \$ 3200 \) to \( \$ 10,000 \) at an interest rate of \( 4.2\% \) compounded monthly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. Plugging in the values, we have: - \( A = 10000 \) - \( P = 3200 \) - \( r = 0.042 \) - \( n = 12 \) Substituting these into the formula gives us: \[ 10000 = 3200 \left(1 + \frac{0.042}{12}\right)^{12t} \] Simplifying the calculation: 1. Calculate \( 1 + \frac{0.042}{12} = 1 + 0.0035 = 1.0035 \). 2. Divide both sides by \( 3200 \): \[ \frac{10000}{3200} = \left(1.0035\right)^{12t} \] \[ 3.125 = 1.0035^{12t} \] 3. Now, take the logarithm of both sides: \[ \log(3.125) = 12t \cdot \log(1.0035) \] 4. Solve for \( t \): \[ t = \frac{\log(3.125)}{12 \cdot \log(1.0035)} \] 5. Calculate the logarithms: Using a calculator: - \( \log(3.125) \approx 0.4948 \) - \( \log(1.0035) \approx 0.00152 \) Substitute these values: \[ t \approx \frac{0.4948}{12 \cdot 0.00152} \approx \frac{0.4948}{0.01824} \approx 27.16 \] So, it will take approximately **27.16 years** for Jennifer's investment to grow to \( \$ 10,000 \).
