Pregunta
Study the function below and then answer the questions that follow.
\[
f(x)=\left\{\begin{array}{cl}
-x-2, & x<-2 \\
-x^{2}, & -2
Ask by Lowe Collins. in the United States
Feb 28,2025
Ask by Lowe Collins. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The domain of \( f(x) \) is \( (-\infty, -2) \cup (-2, \infty) \).
Solución
The function is defined by three pieces:
• For x < -2: f(x) = -x - 2
• For -2 < x < 0: f(x) = -x²
• For x ≥ 0: f(x) = x
Notice that none of the pieces includes x = -2 (it’s excluded in both x < -2 and -2 < x < 0). Therefore, the function is defined for all real numbers except x = -2.
Thus, the domain of f(x) is: (-∞, -2) ∪ (-2, ∞).
This corresponds to the second option given.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
The function \( f(x) \) is defined for all real numbers except at the point \( x = -2 \), where the definition changes. So, the domain of \( f(x) \) encompasses all values of \( x \) except for \( -2 \). The correct way to represent the domain is \( (-\infty, -2) \cup (-2, \infty) \). That's like telling a tale of a map where every spot is treasure except for one: \( -2 \) just isn't on the menu! You've got the whole real number line to explore, minus that one little bump in the road. Happy studying!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium