Pregunta
upstudy study bank question image url

Given functions \( f \) and \( g \), find \( (a)(f \circ g)(x) \) and its domain, and \( (b)(g \circ f)(x) \) and its domain. \( f f(x)=\sqrt{x}, g(x)=x+10 \) (a) \( (f \circ g)(x)=\square \) (Simplify your answer. Type an exact answer, using radicals as needed.) The domain of \( f \circ g \) is \( \square \). (Type your answer in interval notation.) (b) (g of)(x) \( =\square \) (Simplify your answer. Type an exact answers, using radicals as needed.) The domain of \( g \) of is \( \square \). (Type your answer in interval notation.)

Ask by Mullins Lindsey. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( (f \circ g)(x) = \sqrt{x + 10} \) Domain: \( [-10, \infty) \) (b) \( (g \circ f)(x) = \sqrt{x} + 10 \) Domain: \( [0, \infty) \)

Solución

We are given the functions f(x) = √x and g(x) = x + 10. (a) To find (f ∘ g)(x), we compute:   (f ∘ g)(x) = f(g(x)) = f(x + 10) = √(x + 10). For the domain of f ∘ g, we require the radicand to be non‐negative (since f involves a square root):   x + 10 ≥ 0 ⟹ x ≥ –10. Thus, the domain in interval notation is [–10, ∞). (b) To find (g ∘ f)(x), we compute:   (g ∘ f)(x) = g(f(x)) = g(√x) = (√x) + 10. For the domain of g ∘ f, the argument of f must be within the domain of f. Since f(x) = √x, we require:   x ≥ 0. There are no other restrictions (since g is defined for all real numbers). Thus, the domain in interval notation is [0, ∞). Summary of Answers: (a) (f ∘ g)(x) = √(x + 10); Domain: [–10, ∞) (b) (g ∘ f)(x) = √x + 10; Domain: [0, ∞)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( (f \circ g)(x) \) and its domain, we first compute \( f(g(x)) \). Given that \( g(x) = x + 10 \), we have: \[ f(g(x)) = f(x + 10) = \sqrt{x + 10} \] Now, the domain of \( f \) is restricted because \( f(x) = \sqrt{x} \), which is defined only for \( x \geq 0 \). Thus, we need: \[ x + 10 \geq 0 \implies x \geq -10 \] So, we write this in interval notation as \( [-10, \infty) \). For part (b), we need to find \( (g \circ f)(x) \), which involves computing \( g(f(x)) \): \[ g(f(x)) = g(\sqrt{x}) = \sqrt{x} + 10 \] The domain of \( g \) is unrestricted since it is simply \( g(x) = x + 10 \). However, for \( f(x) = \sqrt{x} \), the function is only defined for \( x \geq 0 \). Therefore, the domain of \( g \circ f \) is \( [0, \infty) \). To summarize: (a) \( (f \circ g)(x) = \sqrt{x + 10} \) The domain of \( f \circ g \) is \( [-10, \infty) \). (b) \( (g \circ f)(x) = \sqrt{x} + 10 \) The domain of \( g \circ f \) is \( [0, \infty) \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad