Pregunta
upstudy study bank question image url

An accounting firm has ordered 55 new computers at a cost of \( \$ 1649 \) each. The machines will not be delivered for 8 months. What amount could the firm deposit today in an account paying \( 2.74 \% \) simple interest to have enough money to pay for the machines in 8 months? The present value PV of a future amount of \( F V \) dollars at a simple interest rate \( r \) for \( t \) years is given by which formula? A. PV \( =\mathrm{r}(1+\mathrm{FV}) \) B. PV \( =\mathrm{FV}(1+\mathrm{rt}) \) C. PV \( =\frac{F V}{1+r t} \) D. PV \( =\frac{1+r t}{\mathrm{FV}} \) The firm should deposit \( \$ \square \). (Round to the nearest cent as needed.)

Ask by Logan Paul. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The firm should deposit \$89,073.86 today to have enough money to pay for the computers in 8 months.

Solución

To solve this problem, we need to follow these steps: 1. **Calculate the total future value (FV)** of the computers. 2. **Identify the correct formula** for present value (PV) based on the options provided. 3. **Calculate the present value (PV)** that the firm needs to deposit today. ### Step 1: Calculate the Total Future Value (FV) The firm is ordering 55 computers at a cost of \( \$1649 \) each. Therefore, the total future value (FV) is calculated as follows: \[ FV = \text{Number of Computers} \times \text{Cost per Computer} = 55 \times 1649 \] ### Step 2: Identify the Correct Formula for Present Value (PV) The present value (PV) of a future amount (FV) at a simple interest rate (r) for time (t) is given by the formula: \[ PV = \frac{FV}{1 + rt} \] This corresponds to option C. ### Step 3: Calculate the Present Value (PV) Now we need to calculate the present value using the formula identified. We have: - \( FV = 55 \times 1649 \) - \( r = 2.74\% = 0.0274 \) - \( t = 8 \text{ months} = \frac{8}{12} \text{ years} = \frac{2}{3} \text{ years} \) Now, let's calculate \( FV \) and then \( PV \). 1. Calculate \( FV \): \[ FV = 55 \times 1649 \] 2. Calculate \( PV \): \[ PV = \frac{FV}{1 + rt} \] Now, let's perform these calculations. First, calculate \( FV \): \[ FV = 55 \times 1649 \] Next, calculate \( rt \): \[ rt = 0.0274 \times \frac{2}{3} \] Finally, calculate \( PV \): \[ PV = \frac{FV}{1 + rt} \] Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(55\times 1649\) - step1: Multiply the numbers: \(90695\) Calculate or simplify the expression \( 0.0274 * (2/3) \). Calculate the value by following steps: - step0: Calculate: \(0.0274\times \frac{2}{3}\) - step1: Convert the expressions: \(\frac{137}{5000}\times \frac{2}{3}\) - step2: Multiply the fractions: \(\frac{137\times 2}{5000\times 3}\) - step3: Multiply the terms: \(\frac{274}{5000\times 3}\) - step4: Multiply the terms: \(\frac{274}{15000}\) - step5: Reduce the fraction: \(\frac{137}{7500}\) Calculate or simplify the expression \( 1 + 0.0182 \). Calculate the value by following steps: - step0: Calculate: \(1+0.0182\) - step1: Add the numbers: \(1.0182\) Calculate or simplify the expression \( 90695 / 1.0182 \). Calculate the value by following steps: - step0: Calculate: \(\frac{90695}{1.0182}\) - step1: Convert the expressions: \(\frac{90695}{\frac{5091}{5000}}\) - step2: Multiply by the reciprocal: \(90695\times \frac{5000}{5091}\) - step3: Multiply: \(\frac{90695\times 5000}{5091}\) - step4: Multiply: \(\frac{453475000}{5091}\) Now that we have completed the calculations, let's summarize the results: 1. **Total Future Value (FV)**: \[ FV = 55 \times 1649 = 90695 \] 2. **Interest Rate Calculation (rt)**: \[ rt = 0.0274 \times \frac{2}{3} \approx 0.0182 \] 3. **Calculating \(1 + rt\)**: \[ 1 + rt \approx 1 + 0.0182 \approx 1.0182 \] 4. **Calculating Present Value (PV)**: \[ PV = \frac{FV}{1 + rt} = \frac{90695}{1.0182} \approx 89073.86 \] Thus, the firm should deposit approximately \( \$89073.86 \). ### Final Answer The firm should deposit \( \$89073.86 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the present value (PV) needed for the purchase of the computers, we first need to calculate the future value (FV) required. The total cost of 55 computers at \( \$1649 \) each is \( 55 \times 1649 = \$90,695 \). Since the interest rate is \( 2.74\% \) or \( 0.0274 \), and time \( t = \frac{8}{12} \) years or \( 0.67 \) years, we can use the formula \( PV = \frac{FV}{1 + rt} \). Plugging in the numbers: \[ PV = \frac{90695}{1 + (0.0274)(0.67)} \approx \frac{90695}{1 + 0.018378} \approx \frac{90695}{1.018378} \approx 88929.49. \] Thus, the firm should deposit approximately \( \$88,929.49 \). Hidden in the calculations is a world of possibilities where timing and interest rates create opportunities. It's like planting a financial seed today that will bloom into a cash flower in eight months—thanks to the magic of simple interest! It's also a great point to note that this simple approach works well for budgeting and finance plans, allowing businesses like this accounting firm to manage their cash flow more effectively. Understanding these financial principles not only helps in the buying process but also fosters a culture of financial literacy that can benefit organizations in myriad ways!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad