Pregunta
Factor the following binomial. \[ 100 x^{2}-y^{2} \] \( ([?] x+\quad y)(x-\quad y) \)
Ask by Griffin Cervantes. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
La factorización de \( 100 x^{2}-y^{2} \) es \( (10x - y)(10x + y) \).
Solución
Factor the expression by following steps:
- step0: Factor:
\(100x^{2}-y^{2}\)
- step1: Rewrite the expression:
\(\left(10x\right)^{2}-y^{2}\)
- step2: Factor the expression:
\(\left(10x-y\right)\left(10x+y\right)\)
El binomio \( 100 x^{2}-y^{2} \) se puede factorizar como:
\[
(10x - y)(10x + y)
\]
Por lo tanto, la factorización es \( (10x - y)(10x + y) \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
This binomial is a difference of squares, which can be factored using the formula \( a^2 - b^2 = (a + b)(a - b) \). Here, \( 100x^2 \) can be expressed as \( (10x)^2 \) and \( y^2 \) as \( (y)^2 \). So, we can rewrite our binomial as \( (10x)^2 - (y)^2 \), leading us to the factorization: \[ (10x + y)(10x - y) \] Now, plug that into your answer format: \( (10 x + y)(10 x - y) \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium