Pregunta
upstudy study bank question image url

For her 1st birthday Adriana's parents invested \( \$ 8,000.00 \) in an 15 -year certificate for her that pays \( 9 \% \) compounded quarterly. How much is the certificate worth on Adriana's 16 birthday? Round value to the nearest cent. The certificate will be worth \( \$ \)

Ask by Carroll May. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The certificate will be worth \$30,408.00 on Adriana's 16th birthday.

Solución

We start with the formula for compound interest:   A = P (1 + r/n)^(n*t) where   P = principal = $8,000.00   r = annual interest rate = 9% = 0.09   n = number of compounding periods per year = 4 (quarterly)   t = number of years = 15 Step 1. Substitute the values into the formula:   A = 8000 × (1 + 0.09/4)^(4×15)     = 8000 × (1 + 0.0225)^60     = 8000 × (1.0225)^60 Step 2. Evaluate (1.0225)^60. A calculator (or logarithms) gives:   (1.0225)^60 ≈ 3.801 Step 3. Multiply by the principal:   A ≈ 8000 × 3.801 ≈ 30,408.00 Thus, the certificate will be worth approximately $30,408.00 on Adriana’s 16th birthday (rounded to the nearest cent).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the future value of the investment, you'll use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial investment, which is \( \$ 8,000.00 \)). - \( r \) is the annual interest rate (decimal) (9% or 0.09). - \( n \) is the number of times that interest is compounded per year (quarterly means \( n = 4 \)). - \( t \) is the time the money is invested for in years (15 years). Plugging in the values, we get: \[ A = 8000 \left(1 + \frac{0.09}{4}\right)^{4 \times 15} \] Calculating that step by step: 1. \( \frac{0.09}{4} = 0.0225 \) 2. \( 4 \times 15 = 60 \) 3. \( A = 8000 \left(1 + 0.0225\right)^{60} \) 4. \( A = 8000 \left(1.0225\right)^{60} \) 5. \( A = 8000 \times 4.454 \) (approximately) 6. \( A \approx 35,632.00 \) Thus, rounding to the nearest cent, the certificate will be worth \( \$ 35,632.00 \) on Adriana's 16th birthday. --- If you'd like to learn more about certificates of deposit (CDs) or how investments are compounded over time, let me know! I'm here to help you explore these financial concepts!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad