Pregunta
8. \( 4 \sqrt{6}-(-\sqrt{2}-\sqrt{3})^{3}-(-2 \sqrt{3}-\sqrt{2})^{2}+8-18 \sqrt{\frac{1}{3}}-\frac{6}{\sqrt{2}+1}-\sqrt{27} \)
Ask by Ross Matthews. in Greece
Oct 17,2024
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( 9 - 4\sqrt{2} - 3\sqrt{3} \).
Solución
To simplify the expression
\[
8 + 4 \sqrt{6} - (-\sqrt{2} - \sqrt{3})^3 - (-2 \sqrt{3} - \sqrt{2})^2 - 18 \sqrt{\frac{1}{3}} - \frac{6}{\sqrt{2}+1} - \sqrt{27},
\]
we will evaluate each term step by step.
1. **Calculate \((- \sqrt{2} - \sqrt{3})^3\)**:
\[
(-\sqrt{2} - \sqrt{3})^3 = -(\sqrt{2} + \sqrt{3})^3.
\]
Using the binomial expansion:
\[
(\sqrt{2} + \sqrt{3})^3 = \sqrt{2}^3 + 3\sqrt{2}^2\sqrt{3} + 3\sqrt{2}\sqrt{3}^2 + \sqrt{3}^3 = 2\sqrt{2} + 3 \cdot 2 \cdot \sqrt{3} + 3 \cdot \sqrt{2} \cdot 3 + 3 = 2\sqrt{2} + 6\sqrt{3} + 9.
\]
Therefore,
\[
(-\sqrt{2} - \sqrt{3})^3 = -(2\sqrt{2} + 6\sqrt{3} + 9) = -2\sqrt{2} - 6\sqrt{3} - 9.
\]
2. **Calculate \((-2\sqrt{3} - \sqrt{2})^2\)**:
\[
(-2\sqrt{3} - \sqrt{2})^2 = (2\sqrt{3} + \sqrt{2})^2 = (2\sqrt{3})^2 + 2(2\sqrt{3})(\sqrt{2}) + (\sqrt{2})^2 = 4 \cdot 3 + 4\sqrt{6} + 2 = 12 + 4\sqrt{6} + 2 = 14 + 4\sqrt{6}.
\]
3. **Calculate \(-18 \sqrt{\frac{1}{3}}\)**:
\[
-18 \sqrt{\frac{1}{3}} = -18 \cdot \frac{1}{\sqrt{3}} = -6\sqrt{3}.
\]
4. **Calculate \(-\frac{6}{\sqrt{2}+1}\)**:
To rationalize the denominator:
\[
-\frac{6}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1} = -\frac{6(\sqrt{2}-1)}{(\sqrt{2})^2 - 1^2} = -\frac{6(\sqrt{2}-1)}{2-1} = -6(\sqrt{2}-1) = -6\sqrt{2} + 6.
\]
5. **Calculate \(-\sqrt{27}\)**:
\[
-\sqrt{27} = -3\sqrt{3}.
\]
Now, we can substitute these results back into the original expression:
\[
8 + 4\sqrt{6} - (-2\sqrt{2} - 6\sqrt{3} - 9) - (14 + 4\sqrt{6}) - 6\sqrt{3} - 6\sqrt{2} + 6 - 3\sqrt{3}.
\]
This simplifies to:
\[
8 + 4\sqrt{6} + 2\sqrt{2} + 6\sqrt{3} + 9 - 14 - 4\sqrt{6} - 6\sqrt{3} - 6\sqrt{2} + 6 - 3\sqrt{3}.
\]
Combining like terms:
- Constant terms:
\[
8 + 9 + 6 - 14 = 9.
\]
- Terms with \(\sqrt{6}\):
\[
4\sqrt{6} - 4\sqrt{6} = 0.
\]
- Terms with \(\sqrt{2}\):
\[
2\sqrt{2} - 6\sqrt{2} = -4\sqrt{2}.
\]
- Terms with \(\sqrt{3}\):
\[
6\sqrt{3} - 6\sqrt{3} - 3\sqrt{3} = -3\sqrt{3}.
\]
Putting it all together, we have:
\[
9 - 4\sqrt{2} - 3\sqrt{3}.
\]
Thus, the final simplified expression is:
\[
\boxed{9 - 4\sqrt{2} - 3\sqrt{3}}.
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium