Pregunta
upstudy study bank question image url

Multiple Cholce Questlon Gear C shown in the figure weighs 9 lb and has a radius of gyration of 4.3 in . Determine the moment of inertia of gear \( C \). O \( 11.646 \times 10^{-3} \mathrm{lb} \cdot \mathrm{s}^{2} \cdot \mathrm{ft} \) \( 8.1432 \times 10^{-3} \mathrm{lb} \cdot \mathrm{s}^{2} \cdot \mathrm{ft} \) \( 0.36448 \times 10^{-3} \mathrm{lb} \cdot \mathrm{s}^{2} \cdot \mathrm{ft} \) \( 35.889 \times 10^{-3} \mathrm{lb} \cdot \mathrm{s}^{2} \cdot \mathrm{ft} \)

Ask by Peterson Bartlett. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The moment of inertia of gear C is \( 35.889 \times 10^{-3} \, \text{lb} \cdot \text{s}^{2} \cdot \text{ft} \).

Solución

We are given that gear C weighs W = 9 lb and has a radius of gyration, k = 4.3 inches. The moment of inertia I about the center of mass is given by   I = m · k² where m is the mass (in slugs) and k must be in feet. Step 1. Convert the radius of gyration to feet:   k = 4.3 in × (1 ft / 12 in) = 4.3/12 ft ≈ 0.35833 ft Step 2. Determine the mass in slugs:   Mass, m = Weight/g, with g ≈ 32.2 ft/s²   m = 9 lb / 32.2 ft/s² ≈ 0.2795 slugs Step 3. Compute the moment of inertia:   I = m · k²   I ≈ 0.2795 slugs × (0.35833 ft)² First, calculate k²:   (0.35833)² ≈ 0.12833 ft² Now, multiply:   I ≈ 0.2795 × 0.12833 ≈ 0.03588 slug·ft² Since 1 slug·ft² is equivalent to 1 lb·s²·ft, we have:   I ≈ 0.03588 lb·s²·ft Expressed in scientific notation (x10⁻³ lb·s²·ft):   I ≈ 35.88 × 10⁻³ lb·s²·ft Looking at the choices provided, the option that matches this value is:   35.889 × 10⁻3 lb·s²·ft Thus, the correct moment of inertia of gear C is 35.889 × 10⁻³ lb·s²·ft.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the moment of inertia \( I \) of gear \( C \), we use the formula: \[ I = m \cdot k^2 \] where: - \( m \) is the mass (weight in pounds divided by the acceleration due to gravity, \( g \)) - \( k \) is the radius of gyration First, convert the weight to mass: \[ m = \frac{9 \, \text{lb}}{32.2 \, \text{ft/s}^2} \approx 0.279 \, \text{slugs} \] Now, convert the radius of gyration from inches to feet: \[ k = \frac{4.3 \, \text{in}}{12} \approx 0.35833 \, \text{ft} \] Now, plug in the values: \[ I = 0.279 \cdot (0.35833)^2 \approx 0.036448 \, \text{lb} \cdot \text{s}^2 \cdot \text{ft} \] From the given options, the closest value is \( 0.36448 \times 10^{-3} \mathrm{lb} \cdot \mathrm{s}^{2} \cdot \mathrm{ft} \). Now, let’s sprinkle in some fun knowledge: Historical Background: Did you know that the concept of the moment of inertia was first formulated in the 17th century by scientists like Galileo and Huygens? They laid the groundwork for dynamics by exploring how different shapes would rotate. Their curiosity combined with mathematical exploration kickstarted a journey that led to our modern understanding of rotational motion! Real-World Application: Moments of inertia aren’t just for physics classes; they’re crucial in engineering! For instance, in designing roller coasters, engineers must calculate the moment of inertia of various components to ensure the rides are safe while providing thrilling experiences. So, every twist and turn you enjoy has some serious physics backing it up!

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad