Pregunta
upstudy study bank question image url

\( 1 \leftarrow \begin{array}{l}\text { The velocity of an object is given by the following function defined on a specified interval. Approximate the displacement of the object } \\ \text { on this interval by subdividing the interval into the indicated number of subintervals. Use the left endpoint of each subinterval to } \\ \text { compute the height of the rectangles. } \\ \qquad v=1 /(4 \mathrm{t}+4)(\mathrm{m} / \mathrm{s}) \text { for } 0 \leq t \leq 8 ; \mathrm{n}=4 \\ \text { The approximate displacement of the object is } \square \mathrm{m} \text {. } \\ \text { (Round to two decimal places as needed.) }\end{array} \) ?

Ask by Klein Vega. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The approximate displacement of the object is 0.84 meters.

Solución

To approximate the displacement of the object using the left endpoint method, we will follow these steps: 1. **Identify the function and interval**: The velocity function is given by \( v(t) = \frac{1}{4t + 4} \) for the interval \( [0, 8] \). 2. **Determine the number of subintervals**: We are given \( n = 4 \). 3. **Calculate the width of each subinterval**: The width \( \Delta t \) of each subinterval can be calculated as: \[ \Delta t = \frac{b - a}{n} = \frac{8 - 0}{4} = 2 \] 4. **Identify the left endpoints**: The left endpoints of the subintervals are: - For the first subinterval: \( t_0 = 0 \) - For the second subinterval: \( t_1 = 2 \) - For the third subinterval: \( t_2 = 4 \) - For the fourth subinterval: \( t_3 = 6 \) 5. **Evaluate the velocity at each left endpoint**: - \( v(t_0) = v(0) = \frac{1}{4(0) + 4} = \frac{1}{4} = 0.25 \) - \( v(t_1) = v(2) = \frac{1}{4(2) + 4} = \frac{1}{8 + 4} = \frac{1}{12} \approx 0.0833 \) - \( v(t_2) = v(4) = \frac{1}{4(4) + 4} = \frac{1}{16 + 4} = \frac{1}{20} = 0.05 \) - \( v(t_3) = v(6) = \frac{1}{4(6) + 4} = \frac{1}{24 + 4} = \frac{1}{28} \approx 0.0357 \) 6. **Calculate the approximate displacement**: The approximate displacement \( D \) can be calculated using the formula: \[ D \approx \sum_{i=0}^{n-1} v(t_i) \Delta t \] Substituting the values we calculated: \[ D \approx (v(t_0) + v(t_1) + v(t_2) + v(t_3)) \Delta t \] \[ D \approx \left(0.25 + 0.0833 + 0.05 + 0.0357\right) \cdot 2 \] Now, let's calculate the sum of the velocities and then multiply by \( \Delta t \): \[ D \approx (0.25 + 0.0833 + 0.05 + 0.0357) \cdot 2 \] \[ D \approx (0.4190) \cdot 2 \approx 0.8380 \] Finally, rounding to two decimal places, the approximate displacement of the object is: \[ \boxed{0.84} \text{ m} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To estimate the displacement of the object, we first divide the interval \([0, 8]\) into \(n = 4\) equal subintervals. Each subinterval is of length \(\Delta t = \frac{8 - 0}{4} = 2\) seconds. The left endpoints will be \(t_0 = 0\), \(t_1 = 2\), \(t_2 = 4\), and \(t_3 = 6\). Next, we calculate the velocity at each left endpoint: 1. \(v(0) = \frac{1}{4(0) + 4} = \frac{1}{4}\) 2. \(v(2) = \frac{1}{4(2) + 4} = \frac{1}{12}\) 3. \(v(4) = \frac{1}{4(4) + 4} = \frac{1}{20}\) 4. \(v(6) = \frac{1}{4(6) + 4} = \frac{1}{28}\) To find the approximate displacement, we sum the areas of the rectangles formed by these heights and the width of each subinterval: \[ \text{Displacement} \approx \Delta t \left[v(0) + v(2) + v(4) + v(6)\right] = 2 \left[\frac{1}{4} + \frac{1}{12} + \frac{1}{20} + \frac{1}{28}\right] \] Now, let's find a common denominator for the fractions: The least common multiple of \(4, 12, 20, 28\) is \(420\). Converting each fraction, we get: - \(\frac{1}{4} = \frac{105}{420}\) - \(\frac{1}{12} = \frac{35}{420}\) - \(\frac{1}{20} = \frac{21}{420}\) - \(\frac{1}{28} = \frac{15}{420}\) Adding these together: \[ \frac{105 + 35 + 21 + 15}{420} = \frac{176}{420} \] Now multiplying by \(\Delta t = 2\): \[ \text{Displacement} \approx 2 \cdot \frac{176}{420} = \frac{352}{420} = \frac{88}{105} \] Calculating this gives roughly \(0.8381\). Thus, the approximate displacement of the object is \( \boxed{0.84} \ \text{m} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad