\( 1 \leftarrow \begin{array}{l}\text { The velocity of an object is given by the following function defined on a specified interval. Approximate the displacement of the object } \\ \text { on this interval by subdividing the interval into the indicated number of subintervals. Use the left endpoint of each subinterval to } \\ \text { compute the height of the rectangles. } \\ \qquad v=1 /(4 \mathrm{t}+4)(\mathrm{m} / \mathrm{s}) \text { for } 0 \leq t \leq 8 ; \mathrm{n}=4 \\ \text { The approximate displacement of the object is } \square \mathrm{m} \text {. } \\ \text { (Round to two decimal places as needed.) }\end{array} \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To estimate the displacement of the object, we first divide the interval \([0, 8]\) into \(n = 4\) equal subintervals. Each subinterval is of length \(\Delta t = \frac{8 - 0}{4} = 2\) seconds. The left endpoints will be \(t_0 = 0\), \(t_1 = 2\), \(t_2 = 4\), and \(t_3 = 6\). Next, we calculate the velocity at each left endpoint: 1. \(v(0) = \frac{1}{4(0) + 4} = \frac{1}{4}\) 2. \(v(2) = \frac{1}{4(2) + 4} = \frac{1}{12}\) 3. \(v(4) = \frac{1}{4(4) + 4} = \frac{1}{20}\) 4. \(v(6) = \frac{1}{4(6) + 4} = \frac{1}{28}\) To find the approximate displacement, we sum the areas of the rectangles formed by these heights and the width of each subinterval: \[ \text{Displacement} \approx \Delta t \left[v(0) + v(2) + v(4) + v(6)\right] = 2 \left[\frac{1}{4} + \frac{1}{12} + \frac{1}{20} + \frac{1}{28}\right] \] Now, let's find a common denominator for the fractions: The least common multiple of \(4, 12, 20, 28\) is \(420\). Converting each fraction, we get: - \(\frac{1}{4} = \frac{105}{420}\) - \(\frac{1}{12} = \frac{35}{420}\) - \(\frac{1}{20} = \frac{21}{420}\) - \(\frac{1}{28} = \frac{15}{420}\) Adding these together: \[ \frac{105 + 35 + 21 + 15}{420} = \frac{176}{420} \] Now multiplying by \(\Delta t = 2\): \[ \text{Displacement} \approx 2 \cdot \frac{176}{420} = \frac{352}{420} = \frac{88}{105} \] Calculating this gives roughly \(0.8381\). Thus, the approximate displacement of the object is \( \boxed{0.84} \ \text{m} \).
preguntas relacionadas
