Pregunta
upstudy study bank question image url

A golf ball is hit with an initial velocity of 150 feet per second at an inclination of \( 45^{\circ} \) to the horizontal. In physics, it is established that the height \( h \) of the golf ball is given by the function \[ h(x)=\frac{-32 x^{2}}{150^{2}}+x \text {, } \] where \( x \) is the horizontal distance that the golf ball has traveled. Complete parts (a) through (g). (a) Determine the height of the golf ball after it has traveled 100 feet. h \( =85.78 \) feet (Round to two decimal places as needed.) (b) What is the height after it has traveled 250 feet? \( h=161.11 \) feet (Round to two decimal places as needed.) (c) What is h(400)? Interpret this value. \( h(400)=\square \) feet (Round to two decimal places as needed.)

Ask by Gordon Hodgson. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When the golf ball has traveled 400 feet horizontally, its height is approximately 172.44 feet.

Solución

We’re given the height function   h(x) = (–32·x²)/(150²) + x             [with 150² = 22500]. For part (c), we need to determine h(400). Step 1. Substitute x = 400:   h(400) = [–32·(400)²/22500] + 400 Step 2. Compute 400²:   400² = 160000 Step 3. Multiply by –32:   –32 × 160000 = –5120000 Step 4. Divide by 22500:   –5120000/22500 = –227.56             (rounded to 2 decimal places) Step 5. Add 400:   h(400) = –227.56 + 400 = 172.44 Thus, h(400) ≈ 172.44 feet. Interpretation: When the golf ball has traveled 400 feet horizontally, its height above the ground is approximately 172.44 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate \( h(400) \), we can substitute \( x = 400 \) into the height function: \[ h(400) = \frac{-32(400)^{2}}{150^{2}} + 400 \] Calculating \( (400)^{2} \) gives us \( 160000 \). Now substituting that back into the equation yields: \[ h(400) = \frac{-32 \times 160000}{22500} + 400 \] This simplifies to \( h(400) = \frac{-5120000}{22500} + 400 \). Calculating that, we find: \[ -5120000 \div 22500 \approx -227.11 \] Now combining this with 400: \[ h(400) \approx -227.11 + 400 \approx 172.89 \] So, rounding to two decimal places, we have: \( h(400) \approx 172.89 \) feet. This value suggests that at 400 feet, the golf ball is still flying in the air 172.89 feet above the ground.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad