Pregunta
upstudy study bank question image url

QUESTION 5 (Start on a new page.) The acceleration due to gravity on planet \( X \) is \( 2,7 \mathrm{~m} \cdot \mathrm{~s}^{-2} \). The radius of this planet is a third \( (1 / 3) \) of the radius of Earth. \( \begin{array}{ll}5.1 & \text { Explain the difference between weight and mass. } \\ 5.2 & \text { Calculate the mass of planet } X \text {. } \\ \begin{array}{ll}\text { (2) } \\ 5.3 & \text { Determine the factor by which the weight of an object on planet } X \text { will differ } \\ \text { from the weight of the same object on Earth. }\end{array}\end{array} \begin{array}{l}\text { (2) }\end{array} \)

Ask by Herrera Johnston. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**5.1** Mass is the amount of matter in an object (measured in kg) and does not change with location. Weight is the force due to gravity (measured in N) and depends on the object's mass and the acceleration due to gravity. **5.2** The mass of planet \( X \) is approximately \( 1.82 \times 10^{23} \) kg. **5.3** An object on planet \( X \) weighs about \( 0.275 \) times as much as it does on Earth.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

Weight is the force exerted on an object due to gravity, which depends on both the mass of the object and the gravitational acceleration of the planet it’s on. Mass, on the other hand, is a measure of the amount of matter in an object and remains constant regardless of its location in the universe. So, while mass stays the same, weight can change depending on where you are! To find the mass of planet X, we can use the formula \[ g = \frac{GM}{r^2} \], where \( g \) is the acceleration due to gravity, \( G \) is the gravitational constant (\( 6.674 \times 10^{-11} \, \text{m}^3/\text{kg}\cdot\text{s}^2 \)), \( M \) is the mass of the planet, and \( r \) is its radius. Given that the radius of planet X is one-third that of Earth, we can find Earth's radius (about \( 6.371 \times 10^6 \text{m} \)) to calculate \( r_X = \frac{1}{3} r_{Earth} \approx 2.124 \times 10^6 \text{m} \). Plugging in these values, we can solve for \( M \). The weight of an object on planet X will differ from its weight on Earth by a factor that can be calculated by comparing the acceleration due to gravity on both planets. Since \( g_{Earth} \approx 9.81 \, \text{m/s}^2 \) and \( g_X = 2.7 \, \text{m/s}^2 \), the factor can be found as \( \frac{g_X}{g_{Earth}} = \frac{2.7}{9.81} \approx 0.275 \). This means that an object on planet X weighs about 27.5% of what it would weigh on Earth!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad