Guillermo is a professional deep water free diver. His altitude (in meters relative to sea level), \( x \) seconds after diving, is modeled by \( g(x)=\frac{1}{20} x(x-100) \) How many seconds after diving will Guillermo reach his lowest altitude? seconds
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find Guillermo's lowest altitude, we need to determine the vertex of the quadratic function \( g(x) = \frac{1}{20} x(x - 100) \). The vertex occurs at \( x = -\frac{b}{2a} \), where \( a \) and \( b \) are the coefficients from the standard form \( ax^2 + bx + c \). Here, \( a = \frac{1}{20} \) and \( b = -5 \) (since when expanded, \( g(x) = \frac{1}{20} x^2 - 5x \)). Calculating the time to reach the lowest altitude: \[ x = -\frac{-5}{2(\frac{1}{20})} = \frac{5}{\frac{1}{10}} = 50. \] So, Guillermo will reach his lowest altitude \( 50 \) seconds after diving.
