Pregunta
Suppose \( f(x)=-8 x+2 \) and \( g(x)=\frac{1}{x^{2}-2 x+6} \) \( (f \circ g)(x)=\square \)
Ask by Elliott Dickson. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( (f \circ g)(x) = 2 - \frac{8}{x^{2} - 2x + 6} \)
Solución
To find (f ∘ g)(x), we substitute g(x) into f(x).
The functions are:
f(x) = -8x + 2
g(x) = 1/(x² - 2x + 6)
Substitute g(x) into f(x):
(f ∘ g)(x) = f(g(x)) = -8 * [1/(x² - 2x + 6)] + 2
This simplifies to:
(f ∘ g)(x) = -8/(x² - 2x + 6) + 2
So, the result is:
(f ∘ g)(x) = 2 - 8/(x² - 2x + 6)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find \( (f \circ g)(x) \), we need to substitute \( g(x) \) into \( f(x) \). Starting with \( g(x) \): \[ g(x) = \frac{1}{x^2 - 2x + 6} \] Now substituting \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\frac{1}{x^2 - 2x + 6}\right) \] Using the function \( f(x) = -8x + 2 \): \[ f\left(\frac{1}{x^2 - 2x + 6}\right) = -8\left(\frac{1}{x^2 - 2x + 6}\right) + 2 \] This simplifies to: \[ = -\frac{8}{x^2 - 2x + 6} + 2 \] Thus, the final result for \( (f \circ g)(x) \) is: \[ (f \circ g)(x) = -\frac{8}{x^2 - 2x + 6} + 2 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium