Pregunta
upstudy study bank question image url

\( \begin{array}{l}y=-2 x \\ y=8 x-10\end{array} \) Answer Attempt 1 out of 2 \( (\square, \square) \) Submit Answer

Ask by Logan Mckenzie. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The intersection point is (1, –2).

Solución

We set the two equations equal to each other since they both equal y: –2x = 8x – 10 Add 2x to both sides: 0 = 10x – 10 Add 10 to both sides: 10 = 10x Divide by 10: x = 1 Substitute x = 1 into one of the original equations (using y = –2x): y = –2(1) = –2 So, the intersection is (1, –2).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the intersection of the lines given by the equations \( y = -2x \) and \( y = 8x - 10 \), you can set the right-hand sides equal to each other: \[ -2x = 8x - 10 \] By solving for \( x \), you add \( 2x \) to both sides: \[ 0 = 10x - 10 \] Next, add 10 to both sides: \[ 10 = 10x \] Now, divide both sides by 10: \[ x = 1 \] Now that you have \( x \), plug it back into either original equation to find \( y \). Using \( y = -2x \): \[ y = -2(1) = -2 \] So the intersection point is \( (1, -2) \). Now, if we think about real-world applications, the intersection of lines can represent a point where two different scenarios converge. For example, in economics, it could indicate the equilibrium price where supply and demand meet, leading to insights in market strategies! Also, when solving systems of equations like this, a common mistake is to forget to check if the lines are parallel or coincident. Remember, if the slopes are the same (for instance, if both lines had the form \( y = mx + b \) with the same \( m \)), they would never intersect! Keep a keen eye on those coefficients!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad