Pregunta
upstudy study bank question image url

In a second grade class containing 12 girls and 9 boys, 2 students are selected at random to give out the math papers. What is the probability that both are girls? \( \frac{4}{7} \cdot \frac{4}{7} \) \( \frac{4}{7} \cdot \frac{11}{20} \) \( \frac{4}{7} \cdot \frac{3}{5} \) \( \frac{3}{7} \cdot \frac{2}{5} \)

Ask by Guerrero Goodwin. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that both selected students are girls is \( \frac{11}{35} \) or approximately 0.314.

Solución

To find the probability that both selected students are girls, we need to calculate the probability of selecting a girl on the first draw and then the probability of selecting a girl on the second draw. Given: - Total number of students in the class = 12 girls + 9 boys = 21 students - Number of girls in the class = 12 Probability of selecting a girl on the first draw = Number of girls / Total number of students = 12/21 Probability of selecting a girl on the second draw = Number of girls remaining / Total number of students remaining = 11/20 Therefore, the probability that both selected students are girls is the product of the probabilities of selecting a girl on the first and second draws: \[ \text{Probability} = \frac{12}{21} \times \frac{11}{20} \] Let's calculate this. Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{12}{21}\times 11}{20}\) - step1: Reduce the fraction: \(\frac{\frac{4}{7}\times 11}{20}\) - step2: Multiply the numbers: \(\frac{\frac{44}{7}}{20}\) - step3: Multiply by the reciprocal: \(\frac{44}{7}\times \frac{1}{20}\) - step4: Reduce the numbers: \(\frac{11}{7}\times \frac{1}{5}\) - step5: Multiply the fractions: \(\frac{11}{7\times 5}\) - step6: Multiply: \(\frac{11}{35}\) The probability that both selected students are girls is \( \frac{11}{35} \) or approximately 0.3142857.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve for the probability that both selected students are girls, first, we need to determine the total number of students, which is \(12 + 9 = 21\). The probability of selecting the first girl is \( \frac{12}{21} \). After selecting one girl, there are now 11 girls left and a total of 20 students remaining. Hence, the probability of selecting a second girl is \( \frac{11}{20} \). Now, multiplying these probabilities gives us: \[ P(\text{both are girls}) = \frac{12}{21} \cdot \frac{11}{20} = \frac{12 \cdot 11}{21 \cdot 20} = \frac{132}{420} = \frac{11}{35}. \] So, we can confirm that our calculations are accurate. In the classroom setting, you might find it interesting that probability plays a significant role in daily life, such as predicting outcomes in games or giving chances of winning. Understanding the basic principles can help students think critically in situations involving chance, like card games or rolling dice! Also, a fun fact about probabilities is that they can be misinterpreted. Many people believe that if something hasn’t happened in a while (like a coin landing heads multiple times), it’s "due" to happen. This misconception is known as the gambler's fallacy! Recognizing these common mistakes can help improve your understanding of real-world applications of probability!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad