Pregunta
upstudy study bank question image url

opic 6: Angle of Elevation \& Angle of Depression irecfions: Use a picture to help solve the problem. Round your answer to the nearest tenth. 5. The town park does an outdoor movie night every Saturday during the summer on a large screen. Kate is sitting 36 feet from the base of the screen, watching a movie with her family. the angle of elevation from Kate to the top of the screen is \( 24^{\circ} \), how tall is the movie screen

Ask by Paul Rojas. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The movie screen is approximately 16.0 feet tall.

Solución

To determine the height of the movie screen using the angle of elevation, follow these steps: ### **1. Visualize the Problem with a Right Triangle** Imagine a right triangle where: - **Adjacent Side (Base):** The horizontal distance from Kate to the base of the screen, which is **36 feet**. - **Opposite Side (Height):** The height of the movie screen that we need to find. - **Angle of Elevation:** The angle between the ground and Kate's line of sight to the top of the screen, which is **\(24^{\circ}\)**. ``` /| / | / | / | Height (h) / | /_____| 36 ft Angle = 24° ``` ### **2. Use Trigonometric Ratios** In a right triangle, the **tangent** of an angle is the ratio of the opposite side to the adjacent side. Mathematically, this is expressed as: \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \] Where: - \(\theta = 24^{\circ}\) - Opposite = Height of the screen (\(h\)) - Adjacent = 36 feet ### **3. Set Up the Equation** \[ \tan(24^{\circ}) = \frac{h}{36} \] ### **4. Solve for the Height (\(h\))** \[ h = 36 \times \tan(24^{\circ}) \] ### **5. Calculate Using a Calculator** First, find \(\tan(24^{\circ})\): \[ \tan(24^{\circ}) \approx 0.4452 \] Then, multiply by 36: \[ h = 36 \times 0.4452 \approx 16.0272 \text{ feet} \] ### **6. Round to the Nearest Tenth** \[ h \approx 16.0 \text{ feet} \] ### **Final Answer** The movie screen is approximately **16.0 feet** tall.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the height of the movie screen, we can use a little trigonometry! With Kate sitting 36 feet away and the angle of elevation to the top of the screen being \( 24^{\circ} \), we can apply the tangent function: \[ \text{tan}(24^{\circ}) = \frac{\text{height}}{36} \] Rearranging gives us the height: \[ \text{height} = 36 \times \text{tan}(24^{\circ}) \] Calculating this, we get a height of approximately 15.5 feet. So, the movie screen stands tall at around 15.5 feet! For an engaging visual, imagine Kate leaning back in her chair, sipping on popcorn, all while calculating the height of her favorite movie screen. Remember, trigonometric ratios can always help you find heights or distances with just a bit of angle magic!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad