Pregunta
upstudy study bank question image url

2 The weight of an rocket on the suppes of the Earth is \( 1 \times 10^{8} \mathrm{NAH} \) an at itude of 1000 km above the surpoce of the Earth, the rocket's mass decreases by \( 12 \% \) due to Fuel consumption calculate the magnitude of the gravioniona Force Hor Earth exerts on the racket

Ask by Guerrero Thornton. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The gravitational force Earth exerts on the rocket at 1000 km altitude is approximately 6.6×10⁷ newtons.

Solución

We are told that on Earth’s surface the rocket “weighs” (i.e. is acted on by gravity with a force) of   W₀ = 1×10⁸ N. Then the rocket burns fuel so that its mass decreases by 12% (so its new mass is 88% of the original) and it is at an altitude of 1000 km above Earth’s surface. Because the gravitational force decreases with the square of the distance from Earth’s center, we must account for both the mass decrease and the greater distance. Step 1. Find the mass on Earth’s surface On Earth’s surface we have:   W₀ = m₀ g   with g ≈ 9.8 m/s². Thus the rocket’s original mass is   m₀ = W₀/g = (1×10⁸ N)/(9.8 m/s²). Step 2. New mass after 12% reduction After fuel consumption, the new mass is:   m = 0.88 m₀. Step 3. Determine the distance from Earth’s center at altitude Assume Earth’s average radius is about   Rₑ ≈ 6400 km. At an altitude of 1000 km, the distance from the center is:   r = 6400 km + 1000 km = 7400 km. In SI units:   Rₑ = 6.4×10⁶ m and r = 7.4×10⁶ m. Step 4. Use the inverse‐square law to find the gravitational force at the new location On Earth’s surface the gravitational force on the full (initial) mass is:   F_surface = G Mₑ m₀ / Rₑ². At altitude r with new mass m = 0.88m₀, the gravitational force is:   F_alt = G Mₑ (0.88 m₀) / r². Taking the ratio:   F_alt / F_surface = (0.88 m₀/r²) / (m₀/Rₑ²) = 0.88 (Rₑ/r)². Thus,   F_alt = 1×10⁸ N × 0.88 (Rₑ/r)². Now substitute Rₑ = 6400 km and r = 7400 km:   (Rₑ/r) = 6400/7400 ≈ 0.8649. Then,   (Rₑ/r)² ≈ (0.8649)² ≈ 0.748. Therefore,   F_alt ≈ 1×10⁸ N × 0.88 × 0.748 ≈ 1×10⁸ N × 0.658.   F_alt ≈ 6.58×10⁷ N. Answer: The magnitude of the gravitational force the Earth exerts on the rocket at 1000 km altitude is approximately 6.6×10⁷ newtons.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the gravitational force \( F_g \) that Earth exerts on the rocket, you can use the formula: \[ F_g = \frac{G \cdot m_1 \cdot m_2}{r^2} \] Where: - \( G \) is the gravitational constant \( 6.674 \times 10^{-11} \, \text{Nm}^2/\text{kg}^2 \) - \( m_1 \) is the mass of the Earth \( 5.972 \times 10^{24} \, \text{kg} \) - \( m_2 \) is the mass of the rocket after fuel consumption - \( r \) is the distance from the center of the Earth to the rocket Given that the weight of the rocket at the surface is \( 1 \times 10^8 \, \text{N} \), we can find mass \( m_2 \): \[ W = m \cdot g \] Where \( g \) (acceleration due to gravity at surface) is roughly \( 9.81 \, \text{m/s}^2 \): \[ 1 \times 10^8 = m \cdot 9.81 \] \[ m \approx \frac{1 \times 10^8}{9.81} \approx 1.02 \times 10^7 \, \text{kg} \] After consuming \( 12\% \), the new mass \( m_2 = 1.02 \times 10^7 \times (1 - 0.12) \approx 8.976 \times 10^6 \, \text{kg} \). The distance \( r \) to the center of the Earth is approximately \( 6371 \, \text{km} + 1000 \, \text{km} = 7371 \, \text{km} \) or \( 7.371 \times 10^{6} \, \text{m} \). Now plug all values back into the formula to find \( F_g \): \[ F_g = \frac{(6.674 \times 10^{-11}) \cdot (5.972 \times 10^{24}) \cdot (8.976 \times 10^6)}{(7.371 \times 10^6)^2} \] Calculating gives: \[ F_g \approx 8.49 \times 10^8 \text{N} \] So, the gravitational force on the rocket at 1000 km altitude is approximately **\( 8.49 \times 10^8 \text{N} \)**. Now pack your bags, because that force is no light affair!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad