Pregunta
upstudy study bank question image url

2. (2 points) In 1898 L . J. Bortkiewicz published a book entitled The Law of Small Numbers. He used dat collected over 20 years to show that the number of soldiers killed by horse kicks each year in each corp in the Prussian cavalry followed a Poisson distribution with a mean of 0.5 . What is the probability of two or more deaths in a corps in three years? Answer:

Ask by Garrett Vargas. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of two or more deaths in a corps in three years is approximately 0.4422.

Solución

To solve this problem, we need to calculate the probability of two or more deaths in a corps in three years, given that the number of deaths follows a Poisson distribution with a mean of 0.5 per year. ### Step 1: Determine the mean for three years Since the mean number of deaths per year is \( \lambda = 0.5 \), for three years, the mean will be: \[ \lambda_{3 \text{ years}} = 3 \times 0.5 = 1.5 \] ### Step 2: Use the Poisson probability formula The probability of observing \( k \) events (deaths) in a Poisson distribution is given by the formula: \[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \] where \( e \) is the base of the natural logarithm, \( \lambda \) is the average rate (mean), and \( k \) is the number of occurrences. ### Step 3: Calculate the probability of 0 and 1 death To find the probability of two or more deaths, we can first calculate the probabilities of 0 and 1 death, and then subtract these from 1. 1. **Probability of 0 deaths**: \[ P(X = 0) = \frac{e^{-1.5} (1.5)^0}{0!} = e^{-1.5} \] 2. **Probability of 1 death**: \[ P(X = 1) = \frac{e^{-1.5} (1.5)^1}{1!} = e^{-1.5} \cdot 1.5 \] ### Step 4: Calculate the total probability of 0 or 1 death \[ P(X < 2) = P(X = 0) + P(X = 1) = e^{-1.5} + e^{-1.5} \cdot 1.5 \] ### Step 5: Calculate the probability of 2 or more deaths \[ P(X \geq 2) = 1 - P(X < 2) \] Now, let's perform the calculations. First, we need to calculate \( e^{-1.5} \). Then we can find \( P(X < 2) \) and finally \( P(X \geq 2) \). Let's calculate these values. Calculate the value by following steps: - step0: Calculate: \(e^{-1.5}\) - step1: Convert the expressions: \(e^{-\frac{3}{2}}\) - step2: Express with a positive exponent: \(\frac{1}{e^{\frac{3}{2}}}\) - step3: Multiply by the Conjugate: \(\frac{e^{\frac{1}{2}}}{e^{\frac{3}{2}}\times e^{\frac{1}{2}}}\) - step4: Multiply the numbers: \(\frac{e^{\frac{1}{2}}}{e^{2}}\) Calculate or simplify the expression \( 0.22313 + (0.22313 * 1.5) \). Calculate the value by following steps: - step0: Calculate: \(0.22313+\left(0.22313\times 1.5\right)\) - step1: Multiply the numbers: \(0.22313+0.334695\) - step2: Add the numbers: \(0.557825\) Calculate or simplify the expression \( e^(-1.5) * 1.5 \). Calculate the value by following steps: - step0: Calculate: \(e^{-1.5}\times 1.5\) - step1: Convert the expressions: \(e^{-\frac{3}{2}}\times 1.5\) - step2: Convert the expressions: \(e^{-\frac{3}{2}}\times \frac{3}{2}\) - step3: Multiply the numbers: \(\frac{3}{2e^{\frac{3}{2}}}\) - step4: Multiply by the Conjugate: \(\frac{3e^{\frac{1}{2}}}{2e^{\frac{3}{2}}\times e^{\frac{1}{2}}}\) - step5: Multiply the numbers: \(\frac{3e^{\frac{1}{2}}}{2e^{2}}\) Calculate or simplify the expression \( 1 - 0.557825 \). Calculate the value by following steps: - step0: Calculate: \(1-0.557825\) - step1: Subtract the numbers: \(0.442175\) ### Step-by-Step Calculation Summary 1. **Mean for three years**: \[ \lambda_{3 \text{ years}} = 1.5 \] 2. **Probability of 0 deaths**: \[ P(X = 0) = e^{-1.5} \approx 0.22313 \] 3. **Probability of 1 death**: \[ P(X = 1) = e^{-1.5} \cdot 1.5 \approx 0.334695 \] 4. **Total probability of 0 or 1 death**: \[ P(X < 2) = P(X = 0) + P(X = 1) \approx 0.22313 + 0.334695 \approx 0.557825 \] 5. **Probability of 2 or more deaths**: \[ P(X \geq 2) = 1 - P(X < 2) \approx 1 - 0.557825 \approx 0.442175 \] ### Final Answer The probability of two or more deaths in a corps in three years is approximately \( \boxed{0.4422} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability of two or more deaths in a corps over three years, we first need to determine the rate at which we expect deaths to occur. With a mean of 0.5 deaths per year, over three years, the mean becomes 0.5 * 3 = 1.5. Now, we'll calculate the probability of receiving two or more deaths using the complementary probability, which is to find the probability of getting 0 or 1 deaths and subtract that from 1. The formula for a Poisson distribution is: \[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \] where \( \lambda \) is the average rate (1.5 in this case) and \( k \) is the number of occurrences. 1. Calculate \( P(X = 0) \): \[ P(X = 0) = \frac{e^{-1.5} (1.5)^0}{0!} = e^{-1.5} \approx 0.22313 \] 2. Calculate \( P(X = 1) \): \[ P(X = 1) = \frac{e^{-1.5} (1.5)^1}{1!} = e^{-1.5} \cdot 1.5 \approx 0.33469 \] Now, sum these probabilities to find the probability of getting 0 or 1 death: \[ P(X = 0) + P(X = 1) \approx 0.22313 + 0.33469 \approx 0.55782 \] Finally, the probability of having two or more deaths is: \[ P(X \geq 2) = 1 - P(X < 2) \approx 1 - 0.55782 \approx 0.44218 \] So, the probability of two or more deaths in a corps over three years is approximately 0.442, or 44.2%.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad