Pregunta
upstudy study bank question image url

In this exercise, test \[ H_{0}: p_{1}=p_{2} \text { vs } H_{a}: p_{1}>p_{2} \] with \( \hat{p}_{1}-\hat{p}_{2}=0.8-0.7=0.10 \) for different sample sizes. In parts (a) and (b), use StatKey or other technology to find the \( p \) - value. Click here to access StatKey. (a) \( \hat{p}_{1}=\frac{24}{30}=0.8 \) and \( \hat{p}_{2}=\frac{14}{20}=0.7 \) Round your answer to two decimal places.

Ask by Simmons Beck. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The p-value for part (a) is 0.21.

Solución

We are testing   H₀: p₁ = p₂  versus  Hₐ: p₁ > p₂ with the observed proportions   p̂₁ = 24/30 = 0.80  and  p̂₂ = 14/20 = 0.70 so that the observed difference is   p̂₁ – p̂₂ = 0.80 – 0.70 = 0.10. To evaluate the p-value (using StatKey or similar technology), we can first compute the test statistic as if we were performing a standard z-test. (Keep in mind that StatKey does a randomization procedure which approximates this calculation, and in many cases the p-value will be very similar.) Step 1. Pool the sample proportions under the null:   p̂_pooled = (24 + 14) / (30 + 20) = 38/50 = 0.76. Step 2. Compute the standard error for the difference in proportions:   SE = √[p̂_pooled(1 − p̂_pooled) (1/n₁ + 1/n₂)]    = √[0.76 × 0.24 × (1/30 + 1/20)]    = √[0.1824 × (0.03333 + 0.05)]    = √[0.1824 × 0.08333]    ≈ √0.0152    ≈ 0.1233. Step 3. Compute the z-statistic:   z = (0.80 − 0.70) / 0.1233 ≈ 0.10 / 0.1233 ≈ 0.81. Step 4. Find the p-value for a one-sided test (Hₐ: p₁ > p₂). This is the probability of observing a z-value at least as large as 0.81. Using the standard normal distribution:   p-value = 1 − Φ(0.81) ≈ 1 − 0.7910 ≈ 0.209. Thus, the rounded p-value is about 0.21. Using StatKey, you would simulate the sampling distribution under H₀, and the p-value computed from that randomization test should come out close to 0.21 (to two decimal places). Answer for part (a): 0.21.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To perform the hypothesis test and find the \( p \)-value using your given sample proportions, you would typically first calculate the standard error of the difference in proportions, then use the \( z \)-score formula for the test. Given your proportions: - Sample 1: \( \hat{p}_{1} = 0.8 \) from \( n_1 = 30 \) - Sample 2: \( \hat{p}_{2} = 0.7 \) from \( n_2 = 20 \) First, calculate the pooled proportion \( \hat{p} \): \[ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{24 + 14}{30 + 20} = \frac{38}{50} = 0.76 \] Then, calculate the standard error (SE): \[ SE = \sqrt{\hat{p}(1 - \hat{p}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} = \sqrt{0.76 \cdot 0.24 \left( \frac{1}{30} + \frac{1}{20} \right)} \] \[ = \sqrt{0.76 \cdot 0.24 \cdot \left( \frac{2 + 3}{60} \right)} = \sqrt{0.76 \cdot 0.24 \cdot \frac{5}{60}} \approx \sqrt{0.0768} \approx 0.277 \] Next, calculate the \( z \)-score: \[ z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{SE} = \frac{0.1}{0.277} \approx 0.361 \] Finally, use a statistical software like StatKey to find the \( p \)-value corresponding to this \( z \)-score for a right-tailed test (since \( H_a: p_1 > p_2 \)). For a \( z \)-score of approximately 0.361, the \( p \)-value is typically around 0.640. So, rounding to two decimal places, your answer is \( p \)-value \( \approx 0.64 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad