Determine if L'Hopital's Rule can be used. If it can, solve the limit. If it cannot choose the appropriate response. \( \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x} \) -1 0 L'Hopital's Rule does not apply. 2
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To determine if L'Hopital's Rule can be used, we first check the limit along with the form of the functions involved. As \( x \) approaches 0, both the numerator \( e^{x} - e^{-x} \) and the denominator \( \sin x \) approach 0, thus yielding the indeterminate form \( \frac{0}{0} \), allowing us to apply L'Hopital's Rule. Now, applying L'Hopital's Rule involves differentiating the numerator and denominator. The derivative of the numerator, \( e^x + e^{-x} \), simplifies to \( \cosh(x) \), and the derivative of the denominator, \( \cos x \), leads to: \[ \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = \frac{e^0 + e^0}{\cos(0)} = \frac{1 + 1}{1} = 2. \] So, the final answer is **2**.
