\begin{tabular}{l} Add or subtract the radical expressions as indicated. \\ \( 6 \sqrt{48}+3 \sqrt{8}-\sqrt{75}=\square \) \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify the expression \( 6 \sqrt{48} + 3 \sqrt{8} - \sqrt{75} \), let's first break down each square root: 1. \( \sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3} \) Thus, \( 6 \sqrt{48} = 6 \times 4\sqrt{3} = 24\sqrt{3} \). 2. \( \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} \) Thus, \( 3 \sqrt{8} = 3 \times 2\sqrt{2} = 6\sqrt{2} \). 3. For \( \sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3} \). Now, substituting these back into the expression: \[ 24\sqrt{3} + 6\sqrt{2} - 5\sqrt{3} \] Next, combine like terms: \[ (24\sqrt{3} - 5\sqrt{3}) + 6\sqrt{2} = 19\sqrt{3} + 6\sqrt{2} \] Therefore, the simplified expression is: \[ 19\sqrt{3} + 6\sqrt{2} \] Now filled in the blank, we have: \[ \boxed{19\sqrt{3} + 6\sqrt{2}} \]
