Find the area of the region bounded by the graph of \( f \) and the \( x \)-axis on the given interval. \( f(x)=\frac{4}{x} \) on \( [-2,-1] \) The area of the region is (Type an exact answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the area of the region bounded by the graph of \( f(x) = \frac{4}{x} \) and the \( x \)-axis on the interval \( [-2, -1] \), we first set up the integral. Since \( f(x) \) is negative in this interval, we'll take the absolute value to find the area: \[ \text{Area} = -\int_{-2}^{-1} f(x) \, dx = -\int_{-2}^{-1} \frac{4}{x} \, dx. \] Calculating this integral, we have: \[ -\int \frac{4}{x} \, dx = -4 \ln |x| + C. \] Now we evaluate from \(-2\) to \(-1\): \[ \text{Area} = -\left[-4 \ln |-1| + 4 \ln |-2|\right] = -\left[-0 + 4 \ln 2\right] = 4 \ln 2. \] Thus, the area of the region is \( 4 \ln 2 \).
