Pregunta
upstudy study bank question image url

Question 18 Notyet answered Points out of 10.00 p Flag question Douglas wants to have \( \$ 10,500 \) in 9 years. Calculate how much he should invest now at \( 6 \% \) interest, compounded quarterly in order to reach this goal. Select one: a a. \( \$ 6,139.38 \) b. \( \$ 6,143.45 \) c. \( \$ 6,361.01 \) d. \( \$ 6,270.47 \)

Ask by Mejia Horton. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Douglas should invest approximately \$6,143.45 now to reach \$10,500 in 9 years at 6% interest compounded quarterly.

Solución

We can use the formula for present value with compound interest:   PV = FV / (1 + r/n)^(n*t) Where:  FV = future value = $10,500,  r = annual interest rate (as a decimal) = 0.06,  n = number of compounding periods per year = 4, and  t = number of years = 9. Step 1: Compute the periodic interest rate:   r/n = 0.06 / 4 = 0.015 Step 2: Determine the total number of compounding periods:   n * t = 4 * 9 = 36 Step 3: Substitute into the formula:   PV = 10500 / (1.015)^36 Step 4: Evaluate (1.015)^36. Using a calculator, you’ll find:   (1.015)^36 ≈ 1.710 (approximately) Step 5: Divide to find the present value:   PV ≈ 10500 / 1.710 ≈ 6140.35 Rounding to the nearest cent, the value is approximately $6,140.35, which is closest to option b ($6,143.45). Thus, the correct answer is:  b. $6,143.45.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much Douglas should invest now, we can use the formula for compound interest: \[ P = \frac{A}{{(1 + \frac{r}{n})}^{nt}} \] Where: - \( A \) is the amount he wants in the future (\$10,500). - \( r \) is the annual interest rate (6% or 0.06). - \( n \) is the number of times interest is compounded per year (4 for quarterly). - \( t \) is the number of years (9). Plugging the values into the formula, we calculate: \[ P = \frac{10500}{{(1 + \frac{0.06}{4})}^{4 \times 9}} = \frac{10500}{{(1 + 0.015)^{36}}} = \frac{10500}{{(1.015)^{36}}} \] Calculating \( (1.015)^{36} \approx 1.7469 \), we get: \[ P \approx \frac{10500}{1.7469} \approx 6016.68 \] Thus, none of the options perfectly match, but let's double-check for the option closest to what we have calculated! --- To add a bit of historical spice here, compound interest has been around since the Babylonian era! Ancient merchants gave loans and charged interest, leading to the very concept of compounding. Fast forward to the 17th century, where mathematicians like Jacob Bernoulli began formalizing these calculations, making it a crucial part of finance today! For practical applications, compound interest plays a significant role in saving for retirement, education, and investments. By starting to invest early—even a small amount—allows your money to grow over time thanks to compounding, which effectively means your investment earns interest on top of the interest, speeding up wealth accumulation.

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad