Pregunta
Combine the following expressions. \( 2 \sqrt{k}+\sqrt{k}-3 \sqrt{k} \) \( \sqrt{3 k} \) \( 0-\sqrt{k} \) 0
Ask by Davey Olson. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The combined expression is \( \sqrt{3k} - \sqrt{k} \).
Solución
Let's combine the expressions step-by-step.
1. For the first expression:
2√k + √k - 3√k = (2 + 1 - 3)√k = 0√k = 0
2. The second expression remains as:
√(3k)
3. The third expression:
0 - √k = -√k
4. The fourth expression is simply:
0
Now, adding all these together:
0 + √(3k) + (-√k) + 0 = √(3k) - √k
Thus, the combined expression is:
√(3k) - √k
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
Let’s simplify the expressions step by step. First, combine the terms with \(\sqrt{k}\): \[ 2\sqrt{k} + \sqrt{k} - 3\sqrt{k} - \sqrt{k} = (2 + 1 - 3 - 1)\sqrt{k} = -\sqrt{k} \] Now we include \(\sqrt{3k}\): \[ -\sqrt{k} + \sqrt{3k} \] Finally, considering the constant term 0, the combined expression remains the same: \[ \sqrt{3k} - \sqrt{k} \] Thus, the final combined expression is: \[ \sqrt{3k} - \sqrt{k} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium