Combine the following expressions. \( r \sqrt{t}+s \sqrt{t} \) \( \sqrt{r s+2 t} \) \( (r+s) \sqrt{t} \) \( (r-s) \sqrt{t} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Combining the expressions we have: 1. From the first expression, \( r \sqrt{t} + s \sqrt{t} = (r + s) \sqrt{t} \). 2. The second expression remains as is: \( \sqrt{rs + 2t} \). 3. The third expression simply confirms that \( (r+s) \sqrt{t} \) is indeed the result of adding the first two. 4. The fourth expression, \( (r - s) \sqrt{t} \), stands separately since it involves subtraction instead of addition. So, the final expressions combine nicely into: 1. \( (r + s) \sqrt{t} \) 2. \( \sqrt{rs + 2t} \) 3. \( (r - s) \sqrt{t} \) Each of these is a valid expression for different applications or scenarios!
