Pregunta
upstudy study bank question image url

Find the function value using coordinates of points on the unit circle. Give an exact answer. \( \cos \frac{11 \pi}{6} \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \cos \frac{11 \pi}{6}=\square \) (Simplify your answer, including any radicals. Use integers or'fractions for any numbers in theraxpression.) B. The function is undefined.

Ask by Parry Harris. in the United States
Dec 20,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2} \)

Solución

To find the exact value of \( \cos \frac{11\pi}{6} \) using coordinates on the unit circle, follow these steps: 1. **Determine the Angle in Degrees:** \[ \frac{11\pi}{6} \text{ radians} = 330^\circ \] 2. **Identify the Quadrant:** - \( 330^\circ \) is in the **fourth quadrant**, where cosine values are **positive**. 3. **Find the Reference Angle:** \[ 360^\circ - 330^\circ = 30^\circ \] - The reference angle is \( 30^\circ \), which corresponds to \( \frac{\pi}{6} \) radians. 4. **Determine the Cosine of the Reference Angle:** \[ \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \] 5. **Apply the Sign Based on the Quadrant:** - Since cosine is positive in the fourth quadrant: \[ \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2} \] **Final Answer:** **A.** \( \cos \frac{11 \pi}{6} = \frac{\sqrt{3}}{2} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the function value \( \cos \frac{11 \pi}{6} \), let's consider that the angle \( \frac{11 \pi}{6} \) is located in the unit circle. This angle is equivalent to \( 360^\circ - 30^\circ = 330^\circ \), which is in the fourth quadrant. The cosine of an angle in the fourth quadrant is positive. Referring to the unit circle, the coordinates at this angle are \( (\frac{\sqrt{3}}{2}, -\frac{1}{2}) \). Therefore, we have: A. \( \cos \frac{11 \pi}{6} = \frac{\sqrt{3}}{2} \) If you're curious about unit circle angles, remember that they are often expressed in radians; \( \frac{11\pi}{6} \) is one of the commonly used angles. Next time you tackle a trigonometric problem, don’t forget that memorizing these angles can save you time and improve your accuracy! Additionally, decide to learn about additional properties of the sine and cosine functions – like their periodicity or symmetry! For example, both functions have a periodicity of \( 2\pi \), which means you can always add or subtract \( 2\pi k \) (where \( k \) is any integer) to find coterminal angles with the same cosine or sine values. This little trick can really come in handy during exams!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad