Find the value of the combination. \[ { }_{46} \mathrm{C}_{2} \] \( { }_{46} \mathrm{C}_{2}=\square \) (Type a whole number.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To calculate the combination \( { }_{46} \mathrm{C}_{2} \), we use the formula for combinations: \[ { }_{n} \mathrm{C}_{r} = \frac{n!}{r!(n-r)!} \] Here, \( n = 46 \) and \( r = 2 \). Plugging in these values, we get: \[ { }_{46} \mathrm{C}_{2} = \frac{46!}{2!(46-2)!} = \frac{46!}{2! \cdot 44!} \] We can simplify this expression. The \( 46! \) can be expressed as \( 46 \times 45 \times 44! \): \[ { }_{46} \mathrm{C}_{2} = \frac{46 \times 45 \times 44!}{2! \cdot 44!} \] Now, the \( 44! \) cancels out: \[ { }_{46} \mathrm{C}_{2} = \frac{46 \times 45}{2!} = \frac{46 \times 45}{2} \] Next, we calculate \( 2! = 2 \): \[ { }_{46} \mathrm{C}_{2} = \frac{46 \times 45}{2} = \frac{2070}{2} = 1035 \] Thus, the value of \( { }_{46} \mathrm{C}_{2} \) is \[ \boxed{1035} \]
