Evaluate the function for the indicated values of \( x \).
\( f(x)=\left\{\begin{array}{rr}2 x+1, & x \leq-5 \\ x^{2}, & -5
Ask by Wells Morrison. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's evaluate the function \( f(x) \) based on the given piecewise definition. 1. For \( f(-10) \): Since \( -10 \leq -5 \), we use the first piece \( 2x + 1 \). \[ f(-10) = 2(-10) + 1 = -20 + 1 = -19. \] 2. For \( f(2) \): Since \( -5 < 2 < 5 \), we use the second piece \( x^2 \). \[ f(2) = 2^2 = 4. \] 3. For \( f(-5) \): Since \( -5 \) is at the boundary, we use the first piece \( 2x + 1 \) (as typically \( x \leq -5 \) applies here). \[ f(-5) = 2(-5) + 1 = -10 + 1 = -9. \] 4. For \( f(-1) \): Since \( -5 < -1 < 5 \), we use the second piece \( x^2 \). \[ f(-1) = (-1)^2 = 1. \] 5. For \( f(8) \): Since \( 8 \geq 5 \), we use the third piece \( 3 - x \). \[ f(8) = 3 - 8 = -5. \] So the evaluations are: - \( f(-10) = -19 \) - \( f(2) = 4 \) - \( f(-5) = -9 \) - \( f(-1) = 1 \) - \( f(8) = -5 \)
