Pregunta
upstudy study bank question image url

17. [-/2 Points] DETAILS \( \begin{array}{l}\text { MY NOTES } \\ \text { Find the values of } a \text { and } b \text { that make } f \text { continuous everywhere. } \\ \qquad f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2} & \text { if } x<2 \\ a x^{2}-b x+3 & \text { if } 2 \leq x<3 \\ 2 x-a+b & \text { if } x \geq 3\end{array}\right. \\ a=\square \\ b=\square\end{array} \)

Ask by Griffin Bradley. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a = ½ and b = ½

Solución

We need to find a and b so that the function   f(x) = { (x²–4)/(x–2) if x < 2        a·x² – b·x + 3  if 2 ≤ x < 3        2x – a + b   if x ≥ 3 is continuous for all x. This means we need to ensure continuity at the transition points x = 2 and x = 3. Step 1. Continuity at x = 2 For x < 2: f(x) = (x² – 4)/(x – 2). Notice that for x ≠ 2, the numerator factors as (x – 2)(x + 2), so   (x² – 4)/(x – 2) = x + 2. Thus, the left-hand limit as x → 2⁻ is:   limₓ→2⁻ f(x) = 2 + 2 = 4. For x ≥ 2 (the middle piece): f(x) = a·x² – b·x + 3. Evaluating at x = 2 gives:   f(2) = 4a – 2b + 3. For continuity at x = 2 we require:   4a – 2b + 3 = 4. Subtracting 3 from both sides:   4a – 2b = 1            (Equation 1) Step 2. Continuity at x = 3 For x in [2,3): the middle piece gives:   f(3) = a·(3)² – b·(3) + 3 = 9a – 3b + 3. For x ≥ 3 the function is given by:   f(x) = 2x – a + b. Evaluating at x = 3 gives:   f(3) = 6 – a + b. Setting these equal for continuity at x = 3:   9a – 3b + 3 = 6 – a + b. Bring like terms together:   9a + a – 3b – b = 6 – 3,   10a – 4b = 3         (Equation 2) Step 3. Solve the system of equations We have:   Equation 1: 4a – 2b = 1  or 2a – b = ½   Equation 2: 10a – 4b = 3 Solve Equation 1 for b:   b = 2a – ½. Substitute b into Equation 2:   10a – 4(2a – ½) = 3,   10a – 8a + 2 = 3,   2a + 2 = 3,   2a = 1,   a = ½. Now substitute a back into the expression for b:   b = 2(½) – ½ = 1 – ½ = ½. Answer:   a = ½ and b = ½ These values ensure that f(x) is continuous everywhere.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To ensure that the function \( f(x) \) is continuous everywhere, we need to ensure that both the left-hand limit and the right-hand limit at the points of transition (specifically at \( x=2 \) and \( x=3 \)) match the function's value. 1. For \( x < 2 \), we can simplify \( f(x) \) as: \[ f(x) = \frac{x^2 - 4}{x - 2} = x + 2 \quad \text{(as long as \( x \neq 2 \))} \] Evaluating this as \( x \) approaches 2 gives: \[ \lim_{x \to 2^-} f(x) = 2 + 2 = 4 \] Moving to \( x = 2 \) for the second piece, we set \( f(2) \) equal to the left limit: \[ a(2)^2 - b(2) + 3 = 4 \] Simplifying, we get: \[ 4a - 2b + 3 = 4 \\ \Rightarrow 4a - 2b = 1 \quad \text{(Equation 1)} \] 2. Next, we consider the transition at \( x = 3 \): For the second piece, evaluating at 3 gives: \[ a(3)^2 - b(3) + 3 = 9a - 3b + 3 \] The right-hand limit from the third piece \( f(x) = 2x - a + b \) at \( x=3 \) is: \[ 2(3) - a + b = 6 - a + b \] Setting these equal for continuity: \[ 9a - 3b + 3 = 6 - a + b \\ \Rightarrow 10a - 4b + 3 = 6 \\ \Rightarrow 10a - 4b = 3 \quad \text{(Equation 2)} \] Now we solve these two simultaneous equations: From Equation 1: \[ 2b = 4a - 1 \\ b = 2a - 0.5 \] Substituting for \( b \) in Equation 2: \[ 10a - 4(2a - 0.5) = 3 \\ 10a - 8a + 2 = 3 \\ 2a = 1 \\ a = \frac{1}{2} \] Putting \( a \) back into the expression for \( b \): \[ b = 2\left(\frac{1}{2}\right) - 0.5 = 1 - 0.5 = 0.5 \] So, the final values are: \[ a = \frac{1}{2}, \quad b = \frac{1}{2} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad