Pregunta
upstudy study bank question image url

Solve. \[ \begin{array}{l}\frac{4 x}{5}-x=\frac{x}{15}-\frac{16}{3} \\ \text { Select the correct choice below and, if necessary, fill in the answer box to complete your choice. } \\ \text { B. The solution set is }\{x \mid x \text { is a real number }\} \text {. } \\ \text { C. The solution set is } \varnothing \text {. }\end{array} . \begin{array}{l}\text { A. (Type an integer or a simplified fraction.) }\end{array} \text {. } \]

Ask by Morrison Burgess. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x = 20 \).

Solución

Solve the equation \( \frac{4x}{5}-x=\frac{x}{15}-\frac{16}{3} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{4x}{5}-x=\frac{x}{15}-\frac{16}{3}\) - step1: Multiply both sides of the equation by LCD: \(\left(\frac{4x}{5}-x\right)\times 15=\left(\frac{x}{15}-\frac{16}{3}\right)\times 15\) - step2: Simplify the equation: \(-3x=x-80\) - step3: Move the variable to the left side: \(-3x-x=-80\) - step4: Subtract the terms: \(-4x=-80\) - step5: Change the signs: \(4x=80\) - step6: Divide both sides: \(\frac{4x}{4}=\frac{80}{4}\) - step7: Divide the numbers: \(x=20\) The solution to the equation is \( x = 20 \). Therefore, the correct choice is B. The solution set is \(\{x \mid x \text{ is a real number}\}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \[ \frac{4 x}{5} - x = \frac{x}{15} - \frac{16}{3}, \] we start by simplifying both sides. First, rewrite \(x\) as \(\frac{5x}{5}\): \[ \frac{4x}{5} - \frac{5x}{5} = \frac{x}{15} - \frac{16}{3}. \] Now we can combine the left side: \[ \frac{4x - 5x}{5} = \frac{-x}{5}. \] Next, to solve for \(x\), let's combine like terms on the right side. We need a common denominator to combine \(\frac{x}{15}\) and \(-\frac{16}{3}\). The least common multiple of 15 and 3 is 15, so we write \(-\frac{16}{3}\) as \(-\frac{16 \cdot 5}{3 \cdot 5} = -\frac{80}{15}\): \[ \frac{x}{15} - \frac{80}{15} = \frac{x - 80}{15}. \] Now we rewrite our equation as: \[ \frac{-x}{5} = \frac{x - 80}{15}. \] Cross-multiplying gives us: \[ -15x = 5(x - 80). \] Expanding the right side: \[ -15x = 5x - 400. \] Now, combine like terms by adding \(15x\) to both sides: \[ 0 = 20x - 400. \] Next, add \(400\) to both sides: \[ 400 = 20x. \] Finally, divide both sides by \(20\): \[ x = 20. \] Now let's check our original equation with \(x = 20\): Left Side: \[ \frac{4(20)}{5} - 20 = \frac{80}{5} - 20 = 16 - 20 = -4. \] Right Side: \[ \frac{20}{15} - \frac{16}{3} = \frac{4}{3} - \frac{16}{3} = -\frac{12}{3} = -4. \] Since both sides equal, the solution is confirmed. The answer is: \[ \text{A. } 20. \] **Thus, the correct choice is: A. (Type an integer or a simplified fraction.) 20.**

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad