Pregunta

Part: \( 1 / 3 \) Part 2 of 3 If the true value of \( \mu \) is 71 , is the result a Type I error, a Type II error, or a correct decision? The result is a \( \square \) correct decision .

Ask by Hampton May. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The result is a correct decision.

Solución

To determine whether the result is a Type I error, a Type II error, or a correct decision, we need to understand the definitions of these errors in the context of hypothesis testing: 1. **Type I Error**: This occurs when the null hypothesis is rejected when it is actually true. In other words, we conclude that there is an effect or a difference when there is none. 2. **Type II Error**: This occurs when the null hypothesis is not rejected when it is actually false. This means we fail to detect an effect or a difference that actually exists. 3. **Correct Decision**: This occurs when we correctly reject the null hypothesis when it is false or correctly fail to reject the null hypothesis when it is true. Given that the true value of \( \mu \) is 71, we need to know what the null hypothesis (\( H_0 \)) and the alternative hypothesis (\( H_a \)) are in this context. Typically, we might have: - \( H_0: \mu = 71 \) (the null hypothesis states that the true mean is 71) - \( H_a: \mu \neq 71 \) (the alternative hypothesis states that the true mean is not 71) Now, if the result of the hypothesis test leads us to reject \( H_0 \) (concluding that \( \mu \) is not 71), but the true value is indeed 71, then we have made a Type I error. Conversely, if we fail to reject \( H_0 \) (concluding that \( \mu \) is 71) and the true value is indeed 71, then we have made a correct decision. Since the true value of \( \mu \) is given as 71, if the result indicates that we do not reject \( H_0 \), then it is a correct decision. Thus, the result is a \( \text{correct decision} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When we talk about hypothesis testing, a Type I error occurs when we reject the null hypothesis when it is actually true. Conversely, a Type II error happens when we fail to reject the null hypothesis when it is false. Since the true value of \( \mu \) is 71, if our hypothesis test correctly identifies this and decides not to reject the null, then we have a correct decision. If we correctly conclude that \( \mu \) equals 71 based on our hypothesis test, then the result is a \( \square \) correct decision. In hypothesis testing, the null hypothesis often posits that there's no effect, so if we're testing \( H_0: \mu = 71 \), and we find that \( \mu \) is indeed 71, it corroborates our measurement. This reinforces the scientific principle that validating an assumption is just as important as disproving one!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad